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1. ABSTRACT 

Critical design decisions are commonly made throughout product development assuming known 

material and process behavior. However, the final manufactured product properties depend upon 

the specific tool geometry, material properties, and process dynamics encountered during 

production. Moreover, slight random variations during manufacture can inadvertently result in 

inferior or unacceptable product performance and reduced production yields. Stochastic simulations 

have been developed to estimate the end-use performance distribution prior to the commitment of 

hard tooling.  This paper extends these methods to model the important role of the manufacturing 

response in process optimization and elimination of defects. Small changes in the manufacturing 

method can frequently improve the product quality and eliminate small flaws in the product design. 

Three contributions are made in the domain of net shape manufacturing.  First, a definition for 

robustness is presented. In addition, in the appendix, this definition of robustness is proven to be 

convex, making it extremely suitable for optimization techniques.  Second, a robust design 

methodology is introduced and contrasted with conventional development methods.  Finally, this 

methodology is applied in the example of the concurrent design of a molded plastic part.   
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2. INTRODUCTION 

The synthesis of new concepts is the primary added value activity of design.  While design 

synthesis utilizes deterministic data, the environment surrounding the manufacture and end-use of 

the design is largely uncontrolled and stochastic.  As such, the design robustness largely determines the 

product’s efficiency, reliability, and perceived quality (Ford, 1995). Figure 1 illustrates a segment of a 

typical product development process – needs assessment, conceptual design, and many other tasks 

have been omitted for simplicity.   
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Figure 1: A Common Development Process 

In this process, the design specification acts as a contract between the customers and the 

product development team. During the detail design stage, every effort is spent to ensure that the 

physical manifestation of the design will meet the required design specifications.  Multiple design 

iterations are commonly evaluated before a ‘robust’ solution is accepted (Dixon, 1986). 
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Unfortunately, evaluation techniques available in the early stages of the product development 

process do not typically consider the effect of systematic and stochastic variation during production 

or end-use of the design.  This is an important consideration as the design evaluation occurs before 

production or testing, so the downstream production information is not known and can not be used 

to influence the design.  As such, the resulting product may differ considerably from the idealized 

design and fail to meet the required design specifications.  One or more external design iterations 

may then be necessary to bring the product to acceptable quality or performance levels as indicated 

by the dashed feedback loop in Figure 1.  As Dacey has indicated, these late design iterations often 

require costly tooling changes and delay the product launch (Dacey, 1990). 

This article describes a concurrent analysis method for explicitly considering the stochastic 

variation and manufacturing response during production. The goal is to enable the designer to 

understand and account for the effects of manufacturing and end-use variation.  This knowledge 

could then be applied in the configuration and detailed stages of design to select and tune design 

parameters and manufacturing processes, thereby delivering robust engineering designs. 

3. PRIOR ROBUST DESIGN METHODS 

Deterministic optimization techniques have been traditionally applied in the detailed design stage of 

product development to enhance product performance or reduce unit cost.  Examples include shape 

optimization, wall thickness minimization, and cycle time reduction (Ali, 1994; Burns, 1994; Santoro, 

1992). The application of optimization techniques in these instances was possible because well-defined 

relationships existed between the independent design variables and their performance attributes.  These 

deterministic methods, however, do not consider or predict the impact of stochastic variation in actual 

material properties, manufacturing processes, or end-use operation. 

Two different approaches have been developed to address the issue of variation in 

manufacturing.  Knowing that input variation is unavoidable, Taguchi developed methods of 
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parameter and tolerance design utilizing direct experimental techniques to minimize product 

variation by maximizing the signal-to-noise ratio.  Since the 1970’s, Taguchi has shown that 

robustness can be enhanced in a wide range of applications through use of his Parameter Design 

Methodology (Taguchi, 1993). These methods have now become commonplace in modern 

engineering design and manufacturing practice.  Wilde (1992) and Sundaresan (1989) have developed 

other efficient means for maximizing design robustness when computer models exist of the 

manufacturing process. 

Stochastic and probabilistic optimization (Charnes, 1963) is a separate approach which considers 

the effect of random variation in the assessment and optimization of a design’s performance.  As 

with all optimization problems, the approach and formulation are critical components in developing 

a useful model relating input variation to end use properties.  In stochastic optimization, variables 

are described by distribution functions instead of deterministic constants.  The goal is to determine 

an optimal design that satisfies the required specifications with the highest reliability.  Eggert and 

Mayne (1993) and Lewis  and Parkinson (1994) have provided overviews of this research area. 

There are two fundamental differences between the proposed methodology and previous design 

methods.  First, previous research requires the design parameter distributions be known a-priori to 

estimate the effect of variation on system robustness.  The proposed method takes one step back, 

examining the core sources of variation and conveying the effects through the manufacturing 

process to predict the distribution of end-use product properties. Moreover, the proposed 

methodology also incorporates an estimate of the manufacturing response to improve the product 

properties during production when faced with instances of significant variation. Once the model has 

been developed, the robustness of different candidate designs and processing strategies may be 

evaluated. 
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4. QUANTIFYING ROBUSTNESS 

Each component in an assembled product must be designed with a set of functional 

requirements and specifications, some implicitly understood, others explicitly stated.  Designs to be 

produced using net shape manufacturing processes pose two significant challenges for the designer 

which this method will address.  First, processing as well as geometric design and material properties 

determine the final product properties and performance.  Second, there is significant coupling 

between design, material properties, and processing.  For instance, small changes in the specification 

of a wall thickness for a molded part may result in large swings in the cavity pressure distribution 

which, in turn, may inadvertently affect the material shrinkage and part dimensions thereby 

rendering an unacceptable product. 

These form-fabrication-function relationships are compounded in technical applications with 

multiple requirements, subject to process dynamics and limitations that are unknown to the product 

designer.  To overcome these difficulties, improved analysis techniques have been developed to 

better predict product performance for candidate designs.  In theory, more accurate analysis 

techniques could eliminate the need for costly mold tooling and evaluation iterations.  In reality, 

even the most advanced analyses remain incapable of providing accurate estimates of performance 

for candidate designs given the effects of uncertain material properties and stochastic process 

variation.  As such, the product development process for net-shape manufacturing processes is 

forced to utilize iterative evaluations in which steel must be cut with no guarantee that the mold 

alterations will deliver the desired product performance.  

Let us consider another example: what wall thickness should be used to minimize the cost of a 

die-cast part while ensuring adequate manufacturability and structural performance?  The product 

development team must specify geometric design parameters, material properties, and process 

conditions.  These design decisions influence certain output characteristics such as cooling time, part 
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weight, flow length, and moment of inertia which are of concern to the development team.  

However, it is the exact state of the net-shape process during a part’s manufacture which the 

development team can not know a-priori (let alone measure in-situ!) which will ultimately determine the 

actual end-use properties of the manufactured product.  As such, several design-build-test iterations 

may be required to achieve the desired performance. 

Unexpected variation can result in unsatisfactory product performance, low production yields, 

and increased product cost.  The objective of this design methodology is to enable the creation of 

robust designs whose manufactured product properties are within desired specifications, even in the 

presence of uncertain material properties and stochastic process variations.  Robustness has been 

defined in terms similar to the process capability index (Cp) which is used in characterized 

manufacturing process (Boyles, 1991) for “the nominal the better” specification: 
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Equation 1 

Other types of targets, including one-sided “the smaller/larger the better” specifications have been 

defined elsewhere and are likewise treatable.  

This definition of design robustness indicates the ability of the manufacturing process to deliver 

products that satisfy the specified product requirement – a robustness equal to one represents 

product performance at the target level with three standard deviations to the closest specification 

limit.  If a 12  level of quality is specified to correspond to Motorola 6 guidelines (Denton, 1991), 

the design robustness is required to be 2 or higher.  The robustness of a design with multiple 

requirements may be evaluated via the joint probability of feasibility as: 
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which is also valid for the relation between total and Ptotal. Combining those two equations 

gives: 
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Equation 4 

Thus, design robustness is an aggregate performance measure that includes the consequences of 

product and tolerance design, process capability, and stochastic variation.  There are several 

beneficial properties of this definition for robustness:  

* models multiple design objectives; 

* convex behavior allows for global optimization; 

* allows for direct inclusion of  different kinds of  specifications; 

* consistent with Taguchi’s concept of  tolerance design since it promotes central tendencies 
with small deviations in product properties, rather than a goal post mentality (Devor, 1992); 
and, 

* consistent with many design axioms to minimize information content since the production 
yield will tend to decline geometrically as the number of  requirements rise (Suh, 1990). 

5. METHODOLOGY 

The described methodology, presented in Figure 2, explicitly considers stochastic variation in 

both the design and manufacturing processes – the technique utilizes optimization of the 
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manufacturing process conditions within a stochastic simulation to evaluate the robustness of a 

candidate design for a stochastic manufacturing process.  The output of the methodology is a robust 

product and process design that does not require iterations during tool commissioning. An overview 

of the methodology using a Monte Carlo method as the stochastic optimization is given in Figure 1. 
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Figure 2: Robust Product & Manufacturing Design Methodology 

 
 

5.1. Methodology Requirements 

To enable evaluation of the design and manufacturing robustness, the following items are 

required: 

* a set of  product specifications, indicated by the vector  ; 
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* a candidate design represented by the design variables, x, as well as initial estimates of  the 
manufacturing process described by y; 

* an estimate of  the sources and levels of  variation within the design, x 

* an estimate of  the sources and levels of  variation within the manufacturing processes, y; 
and, 

* a set of  design to manufacturing relationships, usually implemented as a numerical 
simulation, to predict the properties of  manufactured products from design, material 
properties, and process dynamics. 

 

The product specifications are a basic element of every design. The Design and manufacturing 

relations are required to evaluate the product design, and finally the sources and levels of variation 

for the design and the manufacturing process have to be known in order to generate input values for 

the stochastic analysis. Each of the requirements listed above is described below in more detail. 

5.1.1. Product Specifications   

Within this methodology the product specifications are assumed to be given. Once a candidate 

design is synthesized, a random set of design and process conditions is instantiated as consistent 

with {x,y}.  Given this instance of the design, a simulation is performed to estimate the 

manufactured product’s end-use properties, represented by the vector .  The expected value of 

each product property, i, will be compared to its specification, i.. Therefore, the product 

specifications are the constraints for the product parameter. There are two types of constraints to be 

applied in this algorithm: design constraints and process constraints.  Design constraints are 

imposed by the designer on the allowable range of adjustable design variables, x. For instance, 

constraints are typically used to guarantee that a length must be maintained within tolerances or a 

wall thickness must be less than 5 mm.  Process constraints on y stem from the physical limitations 

of the manufacturing processes. 
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5.1.2. Design and Manufacturing Relations x and y 

The first step in the design methodology is to identify critical properties in the final product.  

Process relations are then necessary to link the design variables, x, and process variables, y, to the 

end-use product properties, :  

 

 
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Equation 5 

There are many reliable methods for developing functional models, including empirical, analytical, 

and numerical techniques.  Unfortunately, net-shape manufacturing processes are notoriously 

complex, with highly non-linear interactions between design, material properties, process conditions, 

and end-use properties.  The development of adequate models is a big step – the number of factors 

and complex interactions between factors make it difficult to predict the resulting product 

properties.  In the absence of available models, one might well profit from a Taguchi-style design of 

experiments to identify the critical variables and their effects/interactions. 

5.1.3. Sources and Levels of Variation 

The second step in the design methodology is to identify the root sources of variation and 

understand the mechanisms of variation in production.  Sources and levels of stochastic variation 

must be assessed to evaluate the robustness of the product design and process capability in the 

presence of unknown material properties, random process variation, and other factors.  Some of the 

real-life sources of variation that could be considered using this design methodology: 

* inconsistencies in material properties, such as batch-to-batch variation; 

* effect of  unmodeled or unknown material properties; 

* systematic errors in process conditions; 

* random, time-varying process noise; and 

* inaccurate design or end-use assumptions. 
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All of these factors may vary significantly across a product’s development and life cycle.  The 

evaluation methodology requires probabilistic ranges to be applied to each of the root cause 

variables.  In the following application, each of the many design and process variables are assumed 

to be stochastic and normally distributed with standard deviations.  The methodology, however, is 

not restricted to any unique probability function and may easily be extended to consider arbitrary 

sources and distributions of variation. 

5.2. Iterative Design 

The first of the two loops of the presented methodology is similar to the conventional design 

methodologies (see Figure 1). A set of design variables x is chosen based on previous experience 

with similar designs, engineering knowledge or other design methodologies. Next development 

process, this design was then evaluated using simulations, testing, models or other evaluation 

techniques. Depending if the outcome of the evaluation does meet the specifications the design is 

accepted, otherwise the design variables where modified and a new set of design variables x was 

evaluated. This process gives after multiple iterations a optimized setting for the design variables x. 

In this process, the process variables y receive little or no attention with regards to the product 

performance, yet they play an extremely important role for the final quality and robustness of the 

product. Frequently design optimization techniques stop at this point and ignore the statistical aspect 

of the design. This methodology, however, differs as now the resulting nominal design variables are 

analyzed and optimized in a probabilistic sense, including the process design variables x and the 

process variables y.  

5.3. Stochastic Optimization 

 There are different ways to  evaluate the stochastic behavior of a design. If the functional 

relation of the product and process variables x and y and the product properties  are known, then a 

sensitivity analysis can be performed and the distribution of the product properties can be estimated. 
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However, usually the functional relationship is either not known at all or very complex, making a 

sensitivity analysis very difficult. Therefore, other methods are used to evaluate the product design 

and process from a statistical point of view, for example moment matching methods and Monte 

Carlo simulations. Compared to moment matching methods, Monte Carlo methods are easy to 

implement, highly accurate, and enable consideration of arbitrary, complex, and mixed probability 

distributions.  The one predominant disadvantage, of course, is computation time with thousands of 

function calls being required to estimate robustness.  If the function call is a complex numerical 

simulation, evaluation time can exceed hours or even weeks. For the methodology presented here 

the Monte carlo method was chosen, however, this methodology is easily adaptable to other 

techniques like sensitivity analysis and moment matching methods, and the best method depends on 

the design and the understanding of the system. 

The Monte Carlo simulation algorithm requires that multiple instances of random variables are 

generated for the design and manufacturing variables,  y,x ~~ .  For instance, a randomized set of 

stochastic design variables, ~x, may be generated as: 
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Equation 6 

Then, those multiple instances are evaluated and the distribution of the product parameters is 

estimated. Depending on those estimated output distributions the robustness of the product is 

calculated. If the robustness criteria of the product are met then the algorithm stops and the product 

can be produced and tested, otherwise the product and process variables are adjusted. If two design 
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goals are conflicting, i and j, then a set of process conditions will be selected that makes a 

compromise between the two to maximize the overall utility: 
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Equation 7 

5.4. Output Robustness 

Through the described methodology, the product and process robustness is evaluated.  A 

robustness of 1.0 corresponds to the predicted molded part property being centered between the 

upper and lower specification limits, with a predicted standard deviation of one sixth of the 

tolerance band – this corresponds to a production yield of 99.3%.  For higher values of robustness, 

the production yield approaches 100%, indicating that the manufacturing process can always be 

adjusted to compensate for random sources of variation and manufacture products within the 

required specifications.  If a candidate design is not feasible or a manufacturing process is overly 

inflexible, then the robustness will be considerably less than 1. 

In the manufacture of complex net-shape products, such as injection molding of automotive 

instrument panels, initial production yields of ~95% are often considered acceptable.  By utilizing 

process relationships with wide probabilistic spreads in the evaluation, a predicted robustness near 

1.0 indicates that the process flexibility exists to meet the required product specifications and that re-

tooling or additional design iterations should not be necessary in production. 

If the predicted robustness is significantly lower than 1, rework of the design or consideration of 

a different manufacturing process may be necessary to increase the robustness of the product.  The 

results of the evaluation will indicate which constraint or objective is causing the loss in the product 
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robustness, suggesting a starting point for the product or process redesign.  This may involve 

changing the gating scheme, varying the thickness, increasing allowable tolerances, or other 

numerous actions. When corrective actions have been completed, the relative success of the new 

design may be evaluated.  As with all optimization techniques, the designer’s experience plays a 

crucial role in the evaluation and acceptance of a candidate design.  If the ‘optimal’ design is not 

acceptable, the designer must re-formulate the optimization problem, adjust the relationships 

between design variables and product performance, and guide the design to a more satisfactory 

design space. 

6. APPLICATION TO DIMENSIONAL DESIGN FOR THE INJECTION MOLDING 
PROCESS 

Tight tolerance and technical molding applications are becoming increasingly common as the 

injection molding process continues to emerge as the premier vehicle for delivering high quality, value-

added products to the marketplace.  These applications have increased standards for product capability 

and quality which challenges the ability of design and process engineers to deliver acceptable molded 

parts on time and under budget.  In fact, several industry managers have testified that “we are starting 

to see the migration of customers to other manufacturing processes for time-critical applications.” 

Practitioners are utilizing increasingly sophisticated design analyses and molding processes in an 

effort to minimize the time and cost required for development of molding applications.  In theory, 

these advanced technologies provide more robust product and tool designs while reducing the sources 

of manufacturing variation.  In reality, the performance and added value of these methods is not always 

clear.  Design and process engineers need to know the comparative gains that can be made by adopting 

a process before physical implementation. 

The described methodology was applied to evaluate the robustness of different product and 

process designs by comparing standard operating procedures to industry best practices.  The results 
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quantify the likely impact of development strategies from which developers can select the strategy 

with the appropriate cost:benefit characteristics.  Altogether, three different ‘best practices’ are 

investigated for tight tolerance applications: 

* a design engineer minimizing the number of  critical design specifications on a molded part; 

* a tool engineer utilizing constant material shrinkage versus differential shrinkage estimates in 
mold tooling; and, 

* a process engineer re-optimizing the process with material and environment shifts. 

With this information, the product and process development team can determine the correct 

implementation and quality strategy.  While these applications of the methodology were developed 

to provide a valuable example for the plastics industry, it should be clear the described methodology 

is readily extensible to other types of product designs and process technologies. 

6.1. Product Description 

The molding application is an electronics housing, shown in Figure 3. The part is molded of 

CYCOLOY ™C2950 resin, an ABS-PC blend from GE Plastics (Pittsfield, MA).  The melt is 

conveyed into the cavity through a direct, center-sprue gate.  The nominal processing conditions for 

the filling stage consisted of mold and melt temperatures of 70 C and 270 C, and an injection time of 

1.5 seconds.  A packing pressure of 50 MPa was then maintained for 5 seconds, followed by a 

twenty second cooling time. 



Preprint of: Kazmer, David O, and Christoph Roser. “Evaluation of Product and Process Design Robustness.” 
Research in Engineering Design 11, no. 1 (1999): 20–30. 
 

- 16 - 

L4

L1L2

L3
L5

L8

L6

L9

L7L10

 

Figure 3: Typical Molded Part and Specified Dimensions 

In this application, the design specification includes three critical dimensions for locating and 

attaching a mating part to the four gussetted bosses shown in Figure 3.  In this instance, only the 

dimensions L1, L2 and L3 are considered critical, therefore the other dimensions will be ignored. 

For reference, dimension L1 has been specified as 250 ± 0.2 mm while dimensions L2 and L3 have 

been specified as 100 ± 0.2 mm.   

Table 1: Dimensions 

Dimension Nominal Value 
(mm) 

Tolerance 
(mm) 

L1 250 ± 0.2 
L2 100 ± 0.2 
L3 100 ± 0.2 
 

The specified tolerances are not actually ‘tight’ but more typical of industry standards.  Given 

this part description, the goal is to quantify the impact of the described best practices. 

6.2. Problem Formulation 

In this tight tolerance application, the molded part dimensions are the primary measures of 

performance,  . To deliver the desired product performance, the development team can adjust the 
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tool dimensions represented by x, the design variables.  The material behavior is also a design 

parameter, but will exhibit stochastic variation during production.  The manufacturing control 

variables, y, include various temperatures, pressures, and velocities which have a controlled mean 

but may vary stochastically.  

6.2.1. Design and Manufacturing Relations 

Computer simulations have been developed which employ physical laws (i.e. the continuity 

equation, momentum equation, and energy equation) to simulate the machine and plastics behavior 

(Hieber, 1978).  The capabilities of these analyses to predict part dimensions have been well 

documented (Fox, 1998).  As such, a commercial computer aided engineering analysis, Moldflow, 

was utilized to estimate the molded part dimensions for each instantiated set of design and 

manufacturing conditions. 

6.2.2. Sources and Levels of Variation 

Table 2: Sources and Magnitudes of Variation 

Sources Mean Standard Deviation 
Melt Temperature 240 C 5 
Mold Temperature 80 C 8
Injection Time 2.0 sec 0.2
Pack Pressure 50 MPa 3
Pack Time 5 sec 0.2 sec
Cooling Time 20 sec 1.0 sec 
Polymer Viscosity 250 Pa Sec 10
Polymer Density 1.02 gr/cm3 0.06

 
 

The choice and characterization of sources of variation, described in Table 2, was chosen to 

emulate the range of noise that would be encountered in a typical production scenario of 100,000 

parts being produced on four different machines (Kazmer, 1997).  For instance, a ± 5°C fluctuation 

in melt temperature represents the variation in actual melt temperatures across different molding 
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machines and molders.  The ± 8°C range of mold temperatures might reflect variation in water flow 

rates through the tool which have not been specified and therefore vary more between different set 

ups. Similarly, the levels of injection speed and hold pressure shown in the Table 2 are indicative of 

the machine to machine variations in barrel, hydraulic, and controller systems.  Additional sources of 

variation were selected to represent natural material variation, typically due to changes in 

composition or compounding.   

6.3. Relation between Number of Dimensions and Robustness 

To quantify the impact of this best practice for part design, a series of stochastic simulations 

were coupled with mold filling simulations using the described methodology. For each instantiated 

set of material properties and machine parameters, a process simulation was performed to estimate 

the yield when only L1 is specified, then L1 and L2 being specified, and so on until all ten 

dimensions were specified as critical.  The resulting process yield (as calculated by equations 1 and 2) 

is shown in Figure 4 as a function of number of critical dimensions. 
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Figure 4: The Impact of Number of Specified Dimensions on Process Capability 

 

Figure 4 shows that the process capability will be less than one regardless of how many 

dimensions are specified as critical.  For instance, the process capability is 0.83 which corresponds to 

a 99.3% yield when only L1 is specified as critical. This indicates that the standard molding practice 

of utilizing uniform shrinkage estimates and standard operating procedure is not capable of 

delivering high yields of tight tolerance molded parts.  Some process improvements in mold design 

or molding practice will be necessary. 

As additional dimensions are specified as critical, the process capability quickly degrades. 

Interestingly, the shape of the curve indicates which dimensions are easier to achieve and maintain.  

For instance, dimensions L4 and L5 (which are considered non critical and therefore are not 

analyzed in the example) result in fairly low reductions in the process capability.  This is due to the 
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fact that the dimensions are close to the gate, and that the tolerances are fairly large compared to the 

measured lengths.  In contrast, dimension L10 results in a significant drop in the process capability 

since it is at the end of fill and has a relatively tight tolerance of 200 ± 0.2 mm. 

6.4. Results 

In the following, the methodology described above is applied in two different ways in order to 

increase robustness. First, the response is centered between the tolerance limits by changing the tool 

dimensions to adapt to the different shrinkage. However, this is easy to do if the tool exists only 

virtual, but if the tool is already cut retooling is rather expensive. the second way this methodology is 

applied is by adjusting the process parameter with respect to different machines in order to reduce 

the variation. This is possible with little cost even after the whole production is already set up. 

6.4.1. Centering the Responses by Retooling 

Given a set of specified part dimensions and tolerances, tight tolerance mold design guidelines 

are used to attain and maintain the desired part attributes.  These tooling guidelines commonly 

include: 1) utilize a uniform wall thickness across the part to reduce differential shrinkage, 2) build 

adequate stiffness into the mold base to reduce mold deflection, and 3) use multiple mold interlocks 

to reduce dimensional play in the parting plane. 

The fundamental issue in achieving tight tolerances is the control of non-uniform shrinkage 

caused by temperature, pressure, and orientation distributions across the part.  Figure 5 plots the 

pressure contours in the electronics housing at the end of the filling stage.  Even though the sprue 

gate has been placed in the center of the cavity, the slightly asymmetric part topology causes 

significant variation in the cavity pressure distribution.  These pressure differentials will continue 

during the packing stage, resulting in varying volumetric shrinkage during the melt solidification. 
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Figure 5: Deterministic Cavity Pressure Distribution During Manufacture 

Standard tool design practice is to utilize a nominal estimate for material shrinkage.  This 

estimate is often provided by the material supplier with instructions for the tool designer to cut 

‘steel-safe,’ such that more metal can be removed should mold changes be necessary to obtain 

acceptable dimensions. Using the described methodology, the fundamental sources of variation in 

the material properties and machine parameters were modeled using Monte Carlo techniques and 

computer simulation to estimate the resulting distribution of part dimensions.  The results of five 

hundred iterations are shown in Figure 6 for standard tool design practices. 
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Figure 6: Distribution of Part Dimensions with Standard Tool Design 

 
In this application, the tool designer utilized a correct estimate of 0.55% for the material 

shrinkage.  As Figure 6 shows, however, the non-uniform cavity pressure distributions generated 

differential material shrinkage and part dimensions.  As such, 96% of the molded parts will be 

acceptable, corresponding to a process capability of 0.62.  It should be noted that changing the 

process conditions will not improve the part properties.  Moreover, any error in the uniform 

shrinkage estimate would only reduce the process capability.  For instance, a reduction in pack 

pressure or the shrinkage estimate might improve dimension one but would worsen dimension 

three. To improve the yield, additional tool iterations would be necessary to individually tune in the 

mold steel dimensions. 

Computer simulations have become fairly accurate in predicting material shrinkage and the 

resulting part dimensions.  As such, a best practice for tight tolerance molding has been recently 
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proposed: utilize differential shrinkage estimates for calculation of mold steel dimensions.  With this 

methodology, steel dimensions in areas of high pressure near the gate would be cut for less 

shrinkage than those areas at the end of fill.  Knowing the deterministic pressure distribution across 

the cavity, this example utilized differential shrinkage estimates of 0.55% for L1, 0.5% for L2, and 

0.60% for L3.  Additional analysis were then performed resulting in the property distributions shown 

in Figure 7.   
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Figure 7: Distribution of Part Dimensions with Best Practice Tool Design 

 
While dimensional variation has not been reduced, the resulting part dimensions are centered 

between the specification limits.  The yield has increased to 99.86%, corresponding to a process 

capability of approximately 1.0. It should also be noted that slight errors in the shrinkage estimates 

would continue to provide better part properties than the standard practice of using uniform 

shrinkage estimates.  Thus, tooling best practice would be to use conservative differential shrinkage 
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estimates, which at least qualitatively reflect the expected behavior of the material shrinkage.  

However, if the material and shrinkage behavior is not well understood, the tool designer should 

resort to standard industry practice and utilize uniform and conservative shrinkage estimates. 

6.4.2. Reduction in Variation by Process Parameter adjusting 

The previous design utilized constant process conditions across all the runs.  A best practice 

approach, becoming more common in industry, is to qualify the process for a given mold geometry 

on a specific machine with a specific lot of material – to continually optimize the process to achieve 

higher manufacturing yields.  While there is stochastic variation between molding machines and 

material lots, the variation within a batch of parts is greatly reduced.  

Using the described methodology, the process conditions were re-optimized to maximize the 

total yield for each instantiated set of material behavior and machine parameters. Figure 8 plots the 

distribution of part dimensions for a tool designed using uniform shrinkage estimates. 
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Figure 8: Distribution of Part Dimensions with Best Practice Molding 

While the dimensions are not precisely centered with respect to the tolerance limits, the standard 

deviation of the dimensions has been reduced along with the range of dimensions.  As such, all three 

dimensions have a distance of several standard deviations to the closest quality boundary.  The 

robustness of the molding process has been increased to 1.9, corresponding to a yield of 

approximately 100%, compared to 99.86% for the centered responses due to the change in tool 

design.  This is a considerable improvement in design robustness, especially considering that no 

additional investment in technology or process capability is required, just a change in the operation 

of the molding machine.  

7. CONCLUSIONS 

A methodology has been described for evaluation of design/manufacturing robustness. This 

methodology is unique in that it is able to model both the fundamental sources of variation in the 

manufacturing process as well as the likely response of the manufacturing engineer to that variation. 

In this way, the robustness of the design and manufacturing pair are evaluated simultaneously. As 

such, the methodology provides a platform from which various design and manufacturing 

technologies and practices can be evaluated. 

This methodology was applied to evaluate best practices for an injection molded, tight tolerance 

application. The results will vary for every molding application with its unique set of product 

specifications, mold geometry, and material properties. However, results indicate that control of 

manufacturing variation provided greater impact than improvements in product or tool design.  

However, Motorola ‘6 Sigma’ quality levels, corresponding to a robustness of 2, are unlikely to be 

achieved without a combination of best practices throughout all stage of product design, tool design, 

and manufacturing. While this example focused on dimensional control for injection molded parts, 
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the methodology can be directly extended to more complex designs, other production processes, 

and other types of performance specifications. 

8. APPENDIX: PROOF OF CONVEX BEHAVIOR 

For a multivariate function like Equation 4, a common method for proof of convexity is to 

compute the Hessian of (i) and show that it is positive definite for all i (Hildebrand, 1962).  

The Hessian of Equation 4, however, is not a well-formed equation due to the characteristics of the 

normal probability density functions.  As such, this definition for robustness can be shown to be 

convex by proving that the function is convex on every one-dimensional subset of its range. The 

proof is begun by defining the probability, p, an estimate of the probability that a manufactured 

product will be acceptable across n quality requirements: 

 
  p

i

n

i   
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1 2 3 
 

Equation 8 

Since each of the i are independent, we can define a kj for each j, 
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Equation 9 

such that: 
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Equation 10 

Equation 4and Equation 10 are identical, though Equation 10 is now in the form of a one-

dimensional subset of Equation 4 where the impact of the other quality attributes are included 

within kj.  Now it must be shown that  is convex along every j-th dimension.  By definition 

(Schneider, 1993), a function   ,: Xg  is convex if for all x,y contained in X and all  

contained from (0,1):  
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Equation 11 

Providing our definition for robustness as g(·),  
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Equation 12 

Rearranging and substituting the definition of the normal cumulative distribution function, : 
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Equation 13 

Simplifying leads to: 
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Equation 14 

Since -1, the inverse normal cumulative distribution function, and erf, the gaussian error 

function, are continuous and strictly monotonic, the above statement is true for all k if the equality 

holds for k contained at the extrema (Hardy, 1978).  In Equation 9, it is critical to note that k 

represents a real probability and will be enclosed in [0,1].  For k=0,  Equation 14 simplifies to: 
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Equation 15 

which is evaluated as the trivial case: 
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    0 0 1 0 0 1     for  all , .  

Equation 16 

For k=1, the operand of -1 is exactly the definition of the normal cumulative distribution 

function which transforms Equation 14 to: 
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Equation 17 

or, 

      1,0,11   all  foryxyx  

Equation 18 

Therefore, the system is convex if the distributions are assumed to be normal. For non normal 

distributions additional proofs are required. 
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