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ABSTRACT 

A FLEXIBLE DESIGN METHODOLOGY 

MAY 2000 

CHRISTOPH H. ROSER, DIPL. ING. (FH) ULM 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor David Kazmer 

The flexible design methodology facilitates development of a minimal cost design 

that can later be adjusted for possible prediction uncertainties. Uncertainty arises in 

product development from assumptions and simplifications in the performance model, 

lack of certainty regarding the requirements, or simply errors in design development. 

Depending on the scope and impact of uncertainty, the design might have to be changed 

later in the product development cycle with negative impact on cost, performance, and 

development time. For a given design, the flexible design methodology determines all 

possible expected outcomes and their likelihood of occurrence. For each expected 

outcome, the likelihood and cost of all possible design changes are evaluated. An 

expected cost is then derived from analysis of the change costs and their joint 

probabilities of the expected outcomes and design changes. The expected cost, together 

with the failure probability, can assist the designer in developing a flexible design. The 

described methodology not only facilitates the trade-off between minimal cost and risk, 

but also evaluates the potential benefit of prediction models with improved prediction 

accuracies. The results indicate that a flexible design allows quick adjustment for 

uncertainties, with only a slight increase in the marginal part cost. 
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GLOSSARY 

(Parker 1994) and (Webster 1988) were a valuable source of definitions, from 

which many of the following definitions were cited completely or with modifications. 

Prof. Wei Chen from the University of Illinois at Chicago, Prof. Linda Schmidt from the 

University of Maryland and Prof. Kemper Lewis from the State University of New York 

at Buffalo also provided valuable assistance through their decision based workshop. 

Assumption:Information generated without sufficient proof of correctness. 

Constraint: Limit on the design variable. 

Cost, Change: Sum of all costs required to change a design. 

Cost, Expected: Cost of a design including cost of possible changes. 

Cost, Information: Cost of acquiring and verifying information. 

Cost, Marginal: Cost of creating one instance of a design. Consists of the material 
cost, the process cost and the amortized tool cost. 

Cost, Total: Sum of marginal cost and change cost. 

Cost: Monetary measurement of value. 

Expected Outcome: Unique combination of specification violations of all specified 
responses.  

Design Change: Change to the design variables of a design. 

Design Element: Generic superset of design variable, response, or specification. 
Includes for example wall thickness, process temperature, deflection 
and weight requirements. 

Design Flexibility: Relative ability of the design response to be changed with a 
small change effort.  

Design Instance: One individual part or unit created from a design.  
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Design Response: Metric in an engineering design dependent on or more design 
variables, which is specified to satisfy certain criteria. Common 
specifications require the design response to be more and/or less than 
an specification limit or to be equal to a target specification. A 
distinction is made between the actual response measured from a large, 
ideally infinite, number of samples and considered to be the true design 
response of the design and the predicted design response, estimated 
using a prediction model. The estimated design response may differ 
from the actual design response and may also differ for different 
prediction models. 

Design Space: Multidimensional space created by the design variables. The 
boundaries of the design space are defined by the specification limits. 
The design variables can have the set of values of any point within the 
design space. 

Design Variable: Controlled or uncontrolled variable influencing an effect in an 
engineering design. Can be described using a metric or subjective 
measurement. Within this dissertation only controlled design variables 
are discussed. Design variables may include but are not limited to 
processing variables, material properties, part and tool geometry. 

Design: Creation that embodies ideas, aims and objectives. To create, fashion, 
execute, or construct according to a plan. 

Error: Error is the use of incorrect information or the incorrect use of information. 

Feasibility: A design satisfying all response specifications. 

Information: The understanding of facts, data and observable relations. Information 
may be inaccurate, incomplete or wrong.  

Knowledge: Within this dissertation used synonymously with information. 

Method: A systematic procedure, technique, or mode of inquiry employed by or 
proper to a particular discipline or art. 

Methodology: A body of methods, rules, and postulates employed by a discipline. 
A particular procedure or set of procedures. 

Noise: Uncontrolled variation. Lack of control may be due to the general inability 
to control a variable or due to economic or other considerations against 
the controlling of a variable. Includes for example friction or vibration, 
which may not be controlled explicitly. 

Objective: Description or measurement of one or more desired design properties for 
comparison of different designs. 
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Prediction Error: Difference between the predicted mean design responses and the 
actual mean design responses. 

Prediction Model: A system of postulates, data, and inferences presented as a 
mathematical description of an entity in order to predict the design 
responses based on the design variables without creating one or more 
instances of the design. 

Probability Density Function: A function of a continuous random variable whose 
integral over an interval gives the probability that its value will fall 
within the interval. 

Quality Requirement: Required probability of specification satisfaction despite 
noise variation. 

Risk: The potential realization of undesirable consequences from hazards arising 
from a possible event. In relation to engineering design, risk is the 
possibility of an undesired outcome of the design. The level of risk is 
related to the probability of the occurrence of an undesired outcome 
and the negative effects due to this undesired outcome. 

Robustness: General insensitivity to variation, where the variation has either little 
effect on the design performance or little negative effect on the design 
performance.  

Simplification: The ignorance of available information in order to reduce the effort 
of handling this information. 

Specification Satisfaction: Situation, where the mean design response is within the 
range(s) defined by the specification limits. 

Specification Violation: Situation, where the mean design response is not within 
the range(s) defined by the specification limits. 

Specification: One or more metrics associated with a design response using 
Boolean logic. The outcome of the combinatory rule has to be true in 
order to satisfy the specification. Common combinatory rules may for 
example require the response to be larger or smaller than the metric, to 
be between or outside the range of two metrics or to be equal the 
metric. Includes for example upper weight limits, upper and lower 
deflection requirements. A specification is feasible if the design 
response is within the allowed range and infeasible otherwise. 

Task: Action within a set of actions designed to achieve a desired goal. 

Trade-Off: A balancing of factors all of which are not attainable at the same time. 
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Uncertainty: Lack of knowledge. In relation to engineering design, uncertainty is a 
lack of knowledge about the causes, effects, and their relations in a 
design. The level of uncertainty can range from a total lack of 
knowledge to the complete knowledge about a design element, in 
which case there would be no uncertainty at all. 

Yield: Measurement for the probability of a part satisfying all specifications based 
on the design response variations and the specification limits. The yield 
can also be expressed in different ways for example by the number of 
defect parts per million parts. 



         CHAPTER 1     

INTRODUCTION 

1.1 Development of Engineering Design 

The objective of this research is to develop a methodology for analyzing design 

responses under uncertainty to assist in the development of an economic design with the 

flexibility to adjust for prediction uncertainty. A brief review of the development of the 

fundamental engineering design methods is outlined in Figure 1. Each advancement leads 

to the improvement of the previously used methods, and to resolve shortcomings of the 

previous methods. Each of these fundamental methods is still utilized in varying degrees, 

and often in combination with each other. This list claims neither to be complete nor to 

be in a precise order. In addition, it can only be speculated what the next important 

developments in engineering design are. However, the author believes that the handling 

of uncertainty will be one of the next important tasks for engineering design research. 

The flexible design methodology attacks this design problem, which has received little 

attention yet, and the research presented in this dissertation will contribute to the field of 

engineering design research. 
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Figure 1: Development of Engineering Design  

1.1.1 Reproduction 

Engineering design utilizes a systematic approach to achieve a desired function in 

a product. Without a desired objective and a logical approach, it is not an engineering 

design process. When, about 2 million years ago, a homo erectus broke a stone by 

accident, and then figured out that he/she can cut things with the sharp edge, he/she 

didn’t use engineering design but rather made an accidental invention.  

However, when this early kind of man decided to make another “knife”, basic 

engineering methodology was used. The homo erectus decided to reproduce a similar 
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stone, with the objective to get a similar sharp edge usable for cutting. With this problem 

defined, he/she utilized the knowledge gained by the accidental production of the first 

knife, and tried to break another stone in the same way. Therefore, the engineering 

method of reproducing existing objects was utilized. 

This method was used frequently throughout history, where for example feudal 

Japan reproduced Portuguese muskets, and is still in use today. The goal of reproduction, 

however, has shifted slightly from reproducing to understanding an existing design. This 

process is known as reverse engineering, and remains a subject of modern design 

research (Otto and Wood 1996). 

1.1.2 Trial and Error 

The objective of engineering design is not only to reproduce an existing design, 

but also to create a new design, existing only in the imagination of the designers. One of 

the simplest engineering methods is trial and error. In the case of the homo erectus, the 

idea might have been a stone knife with a comfortable grip, or a specially shaped edge for 

a special purpose. Due to the lack of other engineering methods, trial and error may have 

been used to obtain a desired stone, whose design then could have been reproduced. 

Trial and error was one of the most commonly used methods of design 

development up to the industrial revolution. Goodyear, for example, spent years of his 

life and literally all of his fortune for trial and error experiments in order to develop the 

vulcanization of rubber in 1844 (Hubert 1893). 

3 



The method of trial and error is still in use today, frequently in combination with 

other methods, although it is usually highly ineffective and not very desirable. It is 

usually used if a process is complex and not very well understood.  

1.1.3 Deterministic Design Prediction 

The trial and error approach is not very effective due to the excessive cost of 

trying different designs until a feasible design is found. Instead, investing the effort to 

understand the underlying design relations facilitates determination of new designs 

according to rational decision-making.  

Whereas the previous engineering methods do not involve science, the design 

prediction uses science to predict the behavior and engineering to create a design. An 

outstanding individual in this respect was Leonardo da Vinci, who not only understood 

the science, but also created new and unique engineering designs based on this science. 

For example, he adapted the Archimedes wheel to design a helicopter, and he designed 

the parachute, very much similar to as it is used today (Letze and Buchsteiner 1997). 

Undoubtedly, the ability to predict the behavior of an engineering design by the 

use of prediction models is crucial to any modern engineering design. For example, any 

text for engineering statics includes prediction equations derived from scientific analysis. 

1.1.4 Robust Design 

However, the deterministic design process does not always create consistent 

product quality, as the production capabilities are limited, and causes the behavior of 

different instances of the design to vary slightly. To resolve this issue, the research 
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community developed methods to handle noise variation in engineering design. These 

methods are frequently described as robust design (Chen and Choi 1996; Esterman et al. 

1996; Iyer and Krishnamurty 1998; Roser and Kazmer 1998; Taguchi 1979; Taguchi and 

Clausing 1990; Taguchi and Phadke 1984; Thornton 1999c), and many different flavors 

of robust design have been developed and are still under development. Currently, 40 

years after the introduction of the robust design methodology in the research community, 

the adaptation of robust design methods in industry is still in progress.  

The second chapter describes a robust design method without consideration of the 

prediction uncertainty. This chapter also introduces a simple engineering example used to 

demonstrate the flexible design methodology. Chapter 3 analyzes the different sources of 

prediction uncertainty, and the effects of prediction uncertainty for the quality of the 

design and the possibilities of design change. However, this chapter does not yet provide 

an approach for handling uncertainty. 

1.1.5 Flexible Design 

In most engineering design methods, prediction models are used. Although it is 

usually known that these models may not be absolutely accurate, uncertainty is frequently 

disregarded due to lack of methods to handle these inaccuracies. Research regarding the 

handling of uncertainty is still in its infancy, and the utilization in industry is virtually 

nonexistent. However, the author believes the impact of the uncertainty on engineering 

design is significant and must be addressed. The problem is described below in this 

chapter in greater detail, and the solution approach is outlined. 
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1.2 Presented Methodology 

Figure 2 shows the outline of a design system as used within this dissertation. The 

design variables, subject to noise, are evaluated using a prediction model, which predicts 

the design responses with certain accuracy. The predicted responses are subject to the 

specifications in order to evaluate the quality and the objective of the design. 

Design
Variable

Noise

Uncertainty

Design
Response

Design
Behavior

 

Figure 2: Design System Outline 

1.2.1 Problem Statement 

Engineering design utilizes design predictions to determine the behavior of a 

design without the effort of creating the physical embodiment of the design. However, as 

mentioned above, these design predictions may have inaccuracies, where the actual 

design response differs from the predicted design response. For very small errors, the 

effect on the design might be insignificant. However, for larger errors there are two 

possible effects, each of which is undesirable. First, the prediction error may cause an 

increase in the defect rate since the actual response violates or is closer to a specification 

limit than predicted. Second, if the prediction error moves the response away from the 

specification limit, the number of defects is reduced. In this case, however, it might have 
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been possible to reduce the cost of the design by reducing this excessive robustness 

against uncertainty.  

In either case, the prediction error reduces the knowledge of the design team 

about the behavior of the design. There are two current methods to avoid defects due to 

prediction uncertainty. First, the design may be created according to the prediction 

models with complete disregard of the prediction uncertainty. In case of an excessive 

number of defects due to uncertainty, the design might have to be changed, delaying the 

design and adding cost to the design project. Second, it may be possible to create a design 

that is insensitive to prediction uncertainty, where the expected prediction uncertainty 

will not cause additional defects. However, in this case the design is likely to be overly 

expensive in order to provide the reduced sensitivity to uncertainty. Therefore, there 

exists a dilemma between the cost of the robustness and the cost of the changes and 

defects.  

The flexible design methodology described in this dissertation aims to generate a 

trade-off between the cost of design changes and the cost of the design. This trade-off 

should be determined in the design development stage in order to select and build the 

design with the least expected cost including possible design changes. The necessary 

steps are described in more detail in the following. 

1.2.2 Uncertainty Description and Requirement 

In order to estimate the number of defects due to prediction uncertainty, the 

prediction uncertainty has to be modeled and a quality requirement has to be defined. 

Within this dissertation, probabilistic methods are used to describe a probability density 
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function of the prediction uncertainty and to evaluate the effects of the uncertainty. The 

second chapter describes a robust design method without consideration of the prediction 

uncertainty. A simple engineering example is introduced to demonstrate the flexible 

design methodology. Chapter 3 analyzes the different sources of prediction uncertainty, 

and the effects of prediction uncertainty upon the quality of the design.  

1.2.3 Possible Defects 

Using the uncertainty models, the probability of violating the specifications can 

be determined, i.e. the likelihood of the prediction uncertainty to require a design change. 

Within this dissertation, a distinction is made between the different expected outcomes, 

and the probability of a defect occurring is evaluated. Depending on the type of the 

defect, the feasible design changes may differ significantly. This flexible design 

methodology evaluates all possible expected outcomes exhaustively as described in 

Chapter 4. 

1.2.4 Possible Design Changes 

If the specifications are violated due to prediction uncertainty, the design has to be 

changed. There are different options for the design change. Depending on the number of 

design variables, any combination of design variables can be changed. Each combination 

of changed variables, however, has its individual cost of change, representing the effort to 

change the design variables. In addition, the effect of a design change depends on the 

investigated expected outcome and the changed variables.  
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As described in Chapter 4, the flexible design methodology considers all possible 

design changes for all possible expected outcomes a priori to determine the likelihood of 

the design change and the cost of the changed design. This exhaustive analysis of the 

defects and associated design changes allows the prediction of the overall expected cost. 

In turn, this measurement of the expected cost allows the comparison of different 

candidate designs in order to determine the design with the least expected cost, 

representing the best trade-off between the cost of design changes and the cost of reduced 

sensitivity to uncertainty. Two methods for the design change analysis are provided. In 

Chapter 4, a deterministic method is utilized, where the outcome of a design change is 

assumed to be known exactly. However, this is usually not the case in industry, where a 

design change might or might not resolve a defect. A design change analysis under 

uncertainty is described in Chapter 5. This improved design change analysis can be used 

if the information regarding the design change uncertainty is known, otherwise the 

deterministic approach may be utilized without significant loss of accuracy. 

1.2.5 Design Flexibility 

It is the expectation that the design with the least expected cost frequently may be 

very flexible, depending on the level of uncertainty and the cost and impact of the design 

changes. The effort required to change design variables depends on the system physics, 

manufacturing facilities, and engineering processes. While in general it is desirable to 

avoid the change of any design variables, this is especially true for expensive design 

variables. Yet, to reduce the probability of change for all design variables could require 

an excessive cost in the design.  
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However, if a design variable is relatively inexpensive to change, it may be 

beneficial to use this variable to compensate for prediction uncertainty. If the prediction 

error causes a violation of the specifications, this easy-to-change design variable may be 

used to adjust the prediction error in order to obtain a feasible design. Of course, this is 

only possible if this variable has the flexibility to be changed and also has an impact on 

the violated design responses. The flexible design methodology seeks to facilitate a 

design where ideally a few easy-to-change design variables are used to adjust for the 

prediction error, and the design variables with a large change cost remain unchanged, 

creating a design with an economic trade-off between the cost of the design and the cost 

and likelihood of design changes. In summary, a flexible design does not try to avoid 

design changes at all cost, but only aims to avoid expensive design changes. Inexpensive 

design changes are valuable degrees of freedom in a design, allowing a low cost design 

with the ability to adjust for prediction uncertainties fast and economically. 

1.2.6 Value of Information 

The flexible design methodology evaluates the expected cost of a design 

including possible design changes with respect to the prediction uncertainty. The 

methodology also enables the comparison of different models with different prediction 

accuracies in order to determine the value of the prediction accuracy, i.e. the value of 

information. If the possible benefits of a prediction model would be known, it is possible 

to compare these benefits with the cost of creating this prediction model.  

As determined in Chapter 6, the estimated model accuracy is simulated using a 

readily available but less accurate prediction model. The expected mean and standard 
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deviation of the prediction errors of the different prediction models are estimated. The 

flexible design methodology can then evaluate the models and assess the value of 

reduced uncertainty. 

 



         CHAPTER 2  

ROBUST DESIGN FOR NOISE 

2.1 Chapter Overview 

The chapter first describes the deterministic design approach. The chapter then 

describes the underlying robust design approach used within this dissertation, as related 

to selected robust design methods. The goal of this chapter is to describe methods used 

throughout the remainder of the dissertation. As such, this chapter will make use of 

probabilistic methods, but leave the detailed description of these methods to other 

references. A selection of references is listed where appropriate. 

A schematic of the robust design method used within this dissertation is shown in 

Figure 3. A probabilistic design evaluation is used to predict the distribution of the design 

responses as a function of the design variables subject to noise. The yield is evaluated as 

the joint probability of the design responses meeting the specification limits. The 

marginal part cost is then used as an objective to improve the design subject to a quality 

requirement. The chapter closes by introducing an example that will be used throughout 

the dissertation. 
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Figure 3: Robust Design Methodology for Noise 

2.2 Design Approaches 

This section introduces the deterministic design approach and the subsequent 

probabilistic design approach. As these sections do not describe new knowledge but 

rather only lay the foundation for the flexible design methodology, the description is brief 

and references are cited for more detail. 
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2.2.1 Deterministic Design Approach  

The goal of engineering design is to create a design where all design responses y 

represented by the vector of design responses Y are within the lower and upper 

specification limits LSL and USL, where the design responses Y are a function of the 

design variables X as shown in Equation 1. Design variables are not restricted to 

geometry but may include processing variables and material properties. 

( )XfY =  

Equation 1 

Within this dissertation, prediction models representing these relations are 

required for the application of the developed methodologies. A more detailed description 

of the prediction models is omitted here, as this depends on the underlying design 

relations. The design team must determine the value of the design variables, X, that 

generates the design responses, Y, to be within the given specification limits as 

represented in Equation 2. 

USLYLSL ≤≤  

Equation 2 

Unfortunately, the relations between the design variables, X, and the design 

responses, Y, are frequently complex. In addition, a change in the design variables X 

might move one design response y inside the related specification limits, but at the same 

time move another design response y outside of the related specification limits. In a 
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deterministic design approach, the goal is to move all design responses in Y within the 

given specification limits, where the design variables X and the design responses Y are 

considered deterministic values. Frequently there exists more than one feasible design, 

allowing the design team to choose from different feasible designs. In this case, an 

additional objective can be used to represent the desirability of a given design, and 

subsequently to select the most desirable design from the feasible set of designs. Within 

this dissertation, a cost objective is used to describe the benefit of the design. For the 

deterministic case, this cost is represented by the marginal cost CM measured per part as a 

function of the design variables X as shown in Equation 3. 

( )XgC M =  

Equation 3 

This marginal part cost may consist of material costs, processing costs and 

amortized tooling costs. Within this dissertation, a cost model representing the relation is 

required for the evaluation of the developed methodologies. A detailed description of the 

cost modeling is avoided, as the model form depends on the specific engineering 

application. 

2.2.2 Probabilistic Design Approach 

An engineering design is frequently used for mass production, where the number 

of parts produced may exceed millions. Unfortunately, it is extremely difficult to create 

absolute identical design instances twice, let alone millions of times. Rather, the values in 

the design variables will vary slightly, also causing the dependent design responses to 
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vary. This variation may cause a feasible deterministic design to produce infeasible 

instances of the design, as the variation may move one or more design responses in Y 

outside of the related specification limits as visualized in Figure 4 for a design with one 

design variable x and one design response y. In this figure, the deterministic response is 

between the specification limits. However, due to noise in the design variable, the 

probabilistic response of the manufactured product may violate the lower and upper 

specification limits. 

y

x

y=f(x)

USL

LSL

 

Figure 4: Design Variation 

The method of robust design is used to reduce the effect of variation on critical 

design responses. There are two different fundamental approaches to robust design. 

(Parkinson 1995) describes them as feasibility robustness and sensitivity robustness. The 

original approach developed by Taguchi (Dehnad 1989; Taguchi 1993a; Taguchi 1993b; 

Taguchi and Konishi 1992; Taguchi and Phadke 1984; Taguchi and Wu 1985) uses a 

signal to noise ratio S/NL to minimize the effect of design response variation as shown in 

Figure 5. (Chen et al. 1996) develops a similar method to minimize the variation caused 
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by noise variables and control variables. Equation 4 shows the mathematical evaluation 

of the signal to noise ratio S/NL for a set of response values yi ranging from 1 to nr 

(Schmidt and Launsby 1994).  
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Equation 4 
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Figure 5: Robust Design by Minimizing Response Variance 

This sensitivity robustness approach has the benefit of minimizing the variance in 

the design responses, therefore creating designs that are more consistent. However, this 

17 



approach limits the design variables to insensitive areas within the possible design space. 

This may reduce the overall performance of the design for the sake of variance control. 

Also, Taguchi's signal to noise ratio may not always generate feasible and robust results 

as stated by (Wilde 1991). Figure 6, for example, visualizes a situation where a small 

variation and a nominal feasible design will generate a large number of defects compared 

to another response which may be more robust despite a larger variation.  
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Figure 6: Robust Design by Minimizing Probability of Specification Violations 

This flaw is overcome by a different approach, which is also commonly 

considered as robust design. (Parkinson 1995) describes this approach as feasibility 

robustness. The goal of this approach is to minimize the effect of the variation towards 

the probability of design performance satisfaction. Therefore, this approach does not 

minimize response variation but rather reduces the probability of violating the design 

specifications; i.e. the yield is maximized. (Craig 1988)  utilizes this approach to optimize 

a robust design by maximizing the tolerance against variation. Compared to the variation 

minimization approach, a yield maximization approach does not restrict the design 

variables to insensitive areas in the design space, but rather explores the full design space.  
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2.3 Noise 

Noise is uncontrolled and random variation during the production of the design. 

This noise will cause the design variables in X to differ for each instance of the design 

from the nominal values. It is possible to reduce the variation, i.e. the tolerance within 

which a variable can be controlled, however, this requires additional effort and cost. In 

addition, as implied by the Heisenberg uncertainty principle (Heisenberg 1985), it is not 

possible to have absolute control with a finite effort. Hence, it is impossible to completely 

eliminate noise in the design variables. 

2.3.1 Mathematical Description 

As the design responses in Y are a function of the design variables, these design 

responses Y also differ for each instance of the design because of the noise in the design 

variables X. The nature of the noise in the design responses Y depends on the nature of 

the noise in the design variables X and the underlying functional relation between the 

design variables X and the design responses Y.  

In order to evaluate the variation in a design, this variation has to be described as 

a mathematical expression. There are a number of different ways to describe the noise 

distribution. One possible method is to define a tolerance limit with an upper and lower 

boundary between which a design variable or a design response varies. Another 

frequently utilized method is to combine these tolerance limits with a probability of the 

variable or response being within this limit. The process capability indices are also 

describing the likelihood of a variable or response being within given tolerance limit 
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(Kotz and Johnson 1993; Montgomery 1990; Suri et al. 1998; Tata and Thornton 1999). 

However, these methods do not describe the variation in sufficient detail.  

In this dissertation, probability density functions will be used to describe the 

variation in design variables and design responses. The set of probability density 

functions of the design variable noises is nominated as pdfN(X), consisting of the 

individual probability density functions pdfN(xi) for each design variable xi. The set of 

resulting probability density functions of the design response noises is nominated as 

pdfN(Y), consisting of the individual probability density functions pdfN(yj) for each design 

response yj. One possible probability density function is shown in Figure 7, where the 

ratio of the shaded areas in the tails of the distribution to the total area of the distribution 

represent the percentage of parts being outside of the lower and upper specification limit 

LSL and USL for a design response yj. 

y

LSL USL

Defects Defects

pdf (y)N

 

Figure 7: Probability Density Function 

It is also common practice to assume standard distributions (for example normal 

distributions, uniform distributions, or gamma distributions) for design variables to 

20 



reduce the computational effort in handling these density functions. (Siddall 1986) 

describes an approach to code noise in a probability density function.  

2.3.2 Evaluation of Response Noise 

In order to determine the effect of noise, the noise in the design responses pdfN(Y) 

has to be evaluated. If all design variables X, their noise distribution pdfN(X), and the 

relations are known, the response noise pdfN(Y) can be evaluated analytically as shown in 

Equation 5.  

The form of h depends on the selected method for predicting the response 

distribution. A complete prediction of the response noise can only be done if all 

controlled and uncontrolled design variables are considered. A brief overview of selected 

methods to evaluate the design response distributions is listed in Appendix A. (Robinson 

1998) also describes a number of different methods used for variation prediction. 

( ) ( )( )XpdfhYpdf NN =  

Equation 5 

If there is insufficient information regarding the design variable noise pdfN(X), the 

response noise pdfN(Y) can also be modeled according to measured data. If not all 

controlled and uncontrolled design variables can be considered, a prediction of the 

response noise will be incomplete. The predicted response distribution pdfN(Y) will be 

tighter than the actual response distribution due to the disregard of some noise sources. 

One approach is to create a model of the response noise based on measured sample data 

for different regions of the design space. A model predicting the response noise pdfN(Y) 
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based on the design variable values X can be fitted to the experimental data using 

response surface methods (Myers et al. 1989). 

( ) ( )XhYpdf N =  

Equation 6 

Additional variation may be introduced due to measurement errors (Dieck 1996). 

However, within this dissertation measurement errors are not included in the 

methodology. In addition, random variation in measurement errors can be reduced by 

repeated measurement and statistical analysis. 

2.3.3 Probability of Specification Satisfaction with Noise  

The probability density functions pdfN(Y) of the design responses Y can now be 

used to estimate the likelihood of specification satisfaction, i.e. the probability of the 

value of a response y being within the required specification limits. In the deterministic 

evaluation, the ability of specification satisfaction is a Boolean value, true if the response 

value is within the specifications or false if the response value is outside of the 

specification. Due to the effect of noise, however, some instances of the design might 

satisfy a specification while others might not satisfy a specification due to random 

variation. The probability of satisfying one specification and the probability of satisfying 

all specifications is detailed below. 

22 



2.3.3.1 Probability of Satisfying One Specification 

The probability PN
j of satisfying the specification associated with the design 

response yj can be evaluated by integrating the response’s probability density function 

pdfN(yj) between the associated specification limits LSLj and USLj as shown in Equation 

7. This is also visualized above in Figure 7, where the area underneath of the probability 

density function between the specification limits represents the probability of satisfying 

the given specification. For one-sided specification limits, the unused specification limit 

may be set to ≤¶. 

( ) ∫=≤≤=
jUSL

LSLj
j

N
jjj

N
j ypdfUSLyLSLPP ( ) 

Equation 7 

2.3.3.2 Probability of Satisfying All Specifications 

The previous section evaluated the probability of satisfying one specification. 

However, it is assumed that the quality of an instance of the design is inadequate if one or 

more specifications are violated. Hence, the probability of satisfying all specifications of 

a given instance of the design has to be evaluated. The probabilities of satisfying the 

individual specifications PN
j can be combined into a joint probability PN of satisfying all 

specifications, commonly described as the yield. Using Boolean notation, this probability 

can be expressed as shown in Equation 8. This can also be expressed as shown in 

Equation 9, where the product of the individual probabilities of specification satisfaction 
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represents the probability of satisfying all specifications. The covariance is added to 

compensate for the effects of interactions. 

N
n

NNNN PPPPP ∩∩∩∩= ...321  

Equation 8 

covPP N
j

n

j

N +Π=
=1

 

Equation 9 

2.4 Quality Requirement 

In a probabilistic design approach, a design response yj is considered feasible if 

the probability of specification satisfaction PN
j is above a required limit Pa, also 

represented by a certain minimum distance a between the design response yj and the 

lower and upper specification limits LSLN
j and USLN

j. This distance a is measured in 

standard deviations sN
j of the response noise distribution pdfN(yj) as shown in Equation 

10. A value of a of three would represent the probability Pa of at least 99.7% of the 

responses yj being within the specification limits LSLN
j and USLN

j despite noise variation. 

Equation 11 describes the evaluation of the required standard deviation sN
j from the 

noise pdfN(yj) for normal distributions (Devore 1995). The value of Pa can be evaluated 

by integrating a standard normal distribution with a mean of zero and a standard 

deviation of one from -a to +a as shown in Equation 12. If, however, the limit Pa is 

given, the value of a can be calculated using the standard t distribution as shown in 

Equation 13. 
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Equation 13 

2.5 Design Optimization 

Using Pα as the quality requirement, there may exist more than one possible 

feasible design within the design space. Therefore, an objective is also used to choose 

between different feasible designs. The objective and the subsequent optimization are 

described below. 
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2.5.1 Design Objective 

Within this dissertation, the marginal part cost CM is used to determine the 

objective between different feasible designs. The objective is to determine the design 

with the least marginal part cost CM while still satisfying the quality requirement for all 

design responses Y. The optimization can be expressed as: 

jUSLyLSL

iUCLxLCLts

Cmin

N
j

N
jj

N
j

N
j

iii

M

∀⋅−≤≤⋅+

∀≤≤

σασα

..  

Equation 14 

Numerous research are available in the area of objective functions. (Chen et al. 

1998) develops a quality utility using compromise-programming methods. (Keeney 1974) 

investigates multiplicative utility functions. (Otto and Antonsson 1993) implemented the 

method of imprecision using fuzzy set theory. (Wilde 1991) shows the shortcomings of a 

signal to noise ratio and provides an improved objective.  

2.5.2 Optimization Techniques 

There are numerous techniques available for optimization, including functional 

evaluation, linear programming, gradient methods, random search patterns, genetic 

algorithms etc. (Cheng and Li 1997; D'Ambrosio et al. 1997; Das and Dennis 1995; 

Kunjur and Krishnamurty 1997; Osyczka 1985; Steuer 1986) describe different 

multiattribute optimization approaches. (Kazmer et al. 1996; Maglaras et al. 1996) also 

provide probabilistic optimization techniques. For a detailed discussion of a variety of 
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different optimization techniques please refer to (Reklaitis et al. 1983). Optimization 

techniques are well developed and can be used as needed. Therefore, they will not be 

described in further detail in this dissertation.  

2.6 Example: I-Beam  

Throughout the dissertation, a simple example of an extruded cast iron I-beam is 

used to demonstrate the methodology. The beam is specified by the beam height and the 

elastic modulus of the material. The control limits for these design variables are given in 

Table 1. Although the material type is a discrete variable, it is considered continuous to 

simplify the example. Other design variables are set to a fixed value or described in 

dependence with the height and modulus. The deflection of the beam is the specified 

response. In addition, the part cost of the beam is evaluated. An overview of the design 

responses is shown in Table 2. The relation between the design variables and the design 

response and the cost are determined using an analytical model, which is then simplified 

to a response surface method using a design of experiments. Note that the stress of the 

beam is always assumed to be less than the critical stress. A detailed description can be 

found in Appendix B. In addition, a more complex real world example will be used to 

demonstrate the developed method in Chapter 6.  

Table 1: I-Beam Design Variables 

Design Variable Nom. Unit LCL UCL 

Beam Height H mm 30 60 

Elastic Modulus E N/mm2 90,000 185,000 
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Table 2: I-Beam Design Responses 

Design Response Nom. Unit LSL USL 

Deflection D mm n/a 0.3 

Part Cost CPart $ n/a n/a 

 

2.6.1 Physical Model 

This example is an extruded I-beam with a constant cross section. The beam has a 

fixed support at one end and is loaded with a force at the other end. The system is 

assumed to be static. The I-beam is shown from the side in Figure 8 and as a cross section 

in Figure 9. The nomenclature of the drawings is explained in Table 3.  

l

F

 

Figure 8: I-Beam Side View 
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Figure 9: I-Beam Cross-Section 

Table 3: I-Beam Drawing Nomenclature 

Design Variable Symbol

Applied Load F 

Beam Length l 

Beam Width W 

Web Thickness w1, w2 

Beam Height H 

Web Height h 

Wall Thickness t 

 

There are two different responses evaluated for the given beam example. These 

responses are the deflection of the beam and the cost of a single beam. The deflection is 

constrained to be less than an upper deflection limit, whereas the part cost is 

unconstrained. 
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2.6.1.1 Deflection 

The deflection is evaluated using the section modulus. Using standard equations 

from (Beitz and Küttner 1995), the moment of inertia Iy is evaluated as shown in 

Equation 15. The underlying relations for the beam geometry are shown in Equation 16. 

The deflection D is evaluated in Equation 17, where E is the elastic modulus of the 

material.  
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Equation 17 

2.6.1.2 Part Cost 

For this example, the part cost is a function of the volume of the part and the cost 

of the material. Fixed production costs are ignored for the sake of simplification. The 

volume V can be calculated as shown in Equation 18. Equation 19 evaluates the marginal 

part cost CPart using the volume V, the density r and the cost of the raw material CR. 
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RPart CVC ⋅⋅= ρ  

Equation 19 

2.6.1.3 Simplifying Assumptions 

The above example is simple, yet already requires numerous design variables to 

evaluate the design response. In order to reduce the complexity, some variables are 

assumed to be constant for the simplified example. The beam length l is set to 1000mm 

and the load F is assumed to be constant at 100N. The beam is assumed to have a 

constant width W of 30mm. The wall thickness t is also assumed to be constant at 5mm. 

Therefore, the deflection D from Equation 17 can be simplified as shown in Equation 20. 
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Equation 20 

The cost of the part CPart depends on the density of the material r and the cost of 

the raw material CR. For this example, the density r is assumed to be constant at 7,200 

kg/m3. The cost of the raw material varies with the modulus of the material. Within this 

example, the cost of the cast iron increases linearly from $500 pert ton at the lower 

constraint limit of the modulus to $540 per ton at the upper constraint limit of the 
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modulus as shown in Equation 21. Combining all assumptions and simplifications into 

one equation evaluates the part cost as shown in Equation 22. 
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Equation 22 

2.6.1.4 Design Variable Noise 

The prediction of the design responses’ noise variation is required. Within this 

example, noise is assumed to occur in the beam height H and the modulus E, having a 

standard normal distribution. The noise deviation is sH and sE for the beam height H and 

the modulus E respectively. Using a moment matching method the resulting noise 

deviation sD of the deflection D can be evaluated as shown in Equation 23. 
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Equation 23 

According to (Beitz and Küttner 1995), the tolerance limits of the extrusion 

process are typically about ≤0.8%. If the tolerance limit is assumed to span three standard 
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deviations, then the standard deviation of the beam height is approximately 0.133 mm for 

a beam height of 50mm. Therefore, the standard deviation of the beam height is set to 0.1 

mm within this example. The modulus E is also assumed to vary. Within this example, 

the influence of the temperature is used to determine the standard deviation of the 

modulus. Between room temperature and an upper operating temperature limit of 200C, 

the modulus of cast iron and similar materials is reduced by up to 5,000N/mm2 according 

to (Beitz and Küttner 1995). Assuming a temperature deviation of ≤70C around room 

temperature, a standard deviation sE of the modulus E of 1,700 N/mm2 can be estimated. 

These noise variations of the design variables are used to evaluate the noise variation of 

the design response in Equation 23. 

2.6.1.5 Physical Model Summary 

This section is a summary of the simplified physical model as described above. 

There exist two design variables, the beam height H and the elastic modulus E as shown 

in Table 4. These variables determine two design responses, the deflection D and the 

marginal part cost CM, as shown in Table 5. The functional relations are shown 

previously in Equation 20 for the deflection D, Equation 23 for the standard deviation sD 

of the deflection D, and Equation 22 for the marginal part cost CPart. 

Table 4: I-Beam Design Variables Physical Model Summary 

Design Variable Nom. Unit LCL UCL Noise Deviation

Beam Height H mm 30 60 0.1 

Elastic Modulus E N/mm2 90,000 185,000 1,700 
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Table 5: I-Beam Design Responses Physical Model Summary 

Design Response Nom. Unit LSL USL 

Deflection D mm n/a 3 

Part Cost CPart $ n/a n/a 

 

2.6.2 Response Surface Model 

The above example is fairly straightforward. However, engineering design 

frequently involves complex examples, where the evaluation of one design requires 

significant effort by computational simulations or physical experiments. In this case, 

response surface methods are frequently used to model the relations in order to simplify 

the evaluation effort. Although this would not be necessary for a simple example as 

described above, a response surface model will be created to show the resulting model 

uncertainties. These model uncertainties will be significant for the flexible design 

methodology described in Chapters 3 and 4. 

2.6.2.1 Design of Experiments 

A central composite design of experiments was selected in order to create a 

second order response surface (Schmidt and Launsby 1994). The sample points are 

shown graphically in Figure 10, where the circles represent sample points taken. The axis 

scales are given both as coded between ≤1 and as physical values. An overview of the 

resulting data is shown in Table 6. 
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Figure 10: Central Composite Design of Experiments 
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Table 6: Design of Experiments Data 

Run H E D sD CPart

1 30 90,000 7.28 0.151 1.44

2 30 185,000 3.54 0.044 1.56

3 60 90,000 1.33 0.026 1.98

4 60 185,000 0.64 0.006 2.14

5 45 70,324 3.42 0.085 1.68

6 45 204,675 1.18 0.012 1.88

7 23.7 137,500 8.60 0.141 1.38

8 66.2 137,500 0.68 0.009 2.18

9 45 137,500 1.75 0.024 1.78

 

2.6.2.2 Resulting Model 

In order to distinguish the response surface prediction model from the actual 

physical model, the nomenclature for the response surface model uses the notation of X 

and Y as used for the description of the flexible design methodology. The design variable 

and the resign response nomenclature are shown in Table 7 and Table 8. 

Table 7: I-Beam Response Model Design Variables 

Design Variable Nom. Unit LCL UCL 

Beam Height x1 mm 30 60 

Elastic Modulus x2 N/mm2 90,000 185,000 
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Table 8: I-Beam Response Model Design Responses 

Design Response Nom. Unit LSL USL 

Deflection y1 mm n/a 3 

Deflection Deviation sN
1 mm n/a n/a 

Marginal Part Cost CM $ n/a n/a 

 

In order to determine the model equations, the data in Table 6 has to be 

augmented to include columns for the constant x1 and x2 values, the interaction x1*x2, and 

the squared effects x1
2 and x2

2. This is shown schematically in Equation 24, where the 

second and third column on the matrix LHS represents the variable values from the H and 

E columns of Table 6. The other columns are a function of the second and third column. 





 ⋅= 2

2
2

121211 xxxxxxLHS  

Equation 24 

The above data now forms Equation 25, where LHS represents the left hand side 

of the equation, i.e. the design variable data including interactions as shown in Equation 

24, RHS represents the right hand side of the equation, i.e. the measured design responses 

from the last three columns of Table 6, and M will contain the model parameters. This 

matrix equation can be solved as shown in Equation 26, using the transpose and inverse 

of the design variable matrix LHS. Due to prediction errors, the standard deviation of the 

deflection can fall below zero. To avoid negative deviations the prediction of the 

deviation is limited to values above the smallest deviation in the design of experiments. 
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The resulting prediction equations for the deflection y1, the standard deviation of the 

noise sN
1 of the deflection y1 and the marginal part cost CM are shown in Equation 27, 

Equation 28, and Equation 29. The regression coefficients indicate a good fit. 
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Equation 29 
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2.6.2.3 Model Validation  

The response surface method tries to replicate the set of data points with a second 

order response surface. As there are nine data points, but only six response surface 

parameters, it is not guaranteed to create a perfect match. Instead, the response surface 

tries to minimize the sum of the squares of deviations from the data points (Wolfram 

1996). Therefore, the prediction model will not necessarily predict the sample points 

exactly, and exhibit a prediction error. Furthermore, the response surface model was 

created using selected data points from the design space. Therefore, the response surface 

may not follow the real design space between the sample points. In the I-beam example, 

the quadratic response surface cannot model an inverse cubed function as the deflection 

shown in Equation 20.  

However, in most response surface applications the prediction error is measured, 

but rarely included in the design evaluation. Therefore, within this Chapter 2 the model is 

only validated and the prediction error distribution estimated. The effect of the prediction 

error on the design will be discussed in Chapter 3 and a possible solution using the 

flexible design methodology will be presented in Chapter 4.  

The validation of the model is performed by comparing the prediction model with 

the physical model for a limited number of random sample points. The response surface 

model of the deflection y1 has been compared with the analytical model of the deflection 

D using 10 randomly distributed points within the design space as shown in Equation 30. 

This is to simulate a typical validation approach, where the model is compared to a 

limited number of sample points. The use of the data from the experimental design is 
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usually avoided to estimate the prediction error between the sample data. The estimation 

of the mean error is shown in Equation 31, where n represents the number of sample 

points. 
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Equation 32 shows the calculation of the standard deviation of the error for the 

deflection. The mean and the standard deviation for the error in the noise prediction and 

the marginal cost prediction have also been evaluated in a similar way and are shown in 

Table 9. Figure 11 shows a graph comparing the response surface model prediction with 

the actual physical model. The top graph varies the beam height x1, while keeping the 

modulus x2 constant at 137,500N/mm2. The bottom graph varies the modulus x2, while 

keeping the beam height x1 constant at 45 mm. 
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Table 9: Prediction Error Mean and Deviation 

Prediction Nom. Mean Error Error Standard Deviation 

Deflection y1 0.4 0.45 
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Figure 11: Prediction Error for Deflection 

It can be seen that the error of the prediction model can make a significant 

difference regarding the development of the design. The effect of these uncertainties will 

be discussed in more detail in Chapter 3, and the handling of these uncertainties will be 
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described as part of the flexible design methodology in Chapter 4. As for now, the 

prediction error is ignored, and the prediction models are assumed to be correct. 

2.6.3 I-Beam Robust Design  

The quality requirement for the I-Beam is to have at least a distance of a standard 

deviations between the mean response y1 of the deflection and the upper specification 

limit USLN
1. Within this example a is required to be at least three, representing three 

standard deviations distance between the mean response and the upper specification limit. 

The upper specification limit is 3mm, requiring the deflection to be below the given limit. 

The two design variables have to be within the given constraint limits as shown in Table 

4. The optimization objective is shown in Equation 33. 
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Equation 33 

Using a gradient search method, the optimal beam design was determined. As 

shown in Table 10, the optimal design uses a modulus of 182,150N/mm2 and reduces the 

beam height to 34.8mm in order to generate a lowest marginal part cost of $1.64.  
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Table 10: Optimal Beam Design 

Variable Nom. Value 

Beam Height x1 34.8 

Modulus x2 182,150

Response Nom. Value 

Deflection y1 2.89 

Marginal Cost CM 1.64 

 

2.7 Conclusion 

The method of robust design is a standard engineering procedure. The design 

variables including noise are evaluated using transfer functions to estimate probabilistic 

design responses. Then these probabilistic design responses are used to develop an 

optimal design that is likely to meet specifications.  

However, the prediction of the design responses is only as accurate as the 

underlying transfer functions and design variables. Inaccuracies in the transfer functions 

or uncertainties in the design variables will cause uncertainty in the design responses. In 

this case, a design optimized for robustness might generate excessive defects and 

therefore excessive cost. In the next chapters, methods are discussed to facilitate 

development of robust designs considering not only noise but also uncertainties.  

 



 

         CHAPTER 3  

DESIGN UNCERTAINTY 

3.1 Introduction 

This chapter discusses the sources and effects of uncertainty in design. 

Uncertainty is defined differently by different researchers. (Finch and Ward 1997) use the 

term uncertainty for both recurring noise variation and one-time offsets in the design in a 

set-based robust design method. (Antonsson and Otto 1995; Wood and Antonsson 1990) 

model uncertainty in design variables during the early design stages, which they describe 

as imprecision, whereas their definition of uncertainty describes random variation in the 

design environment. (Nikolaidis et al. 1999) uses the term “uncertainty” both for random 

variation and for modeling uncertainty. (Sarbacker 1998) defines uncertainty as the lack 

of information and evaluates the effect of uncertainty on the risks of the design process. 

(Cohen and Freeman 1996) describe a collection of ideas regarding uncertainty in 

decision making for naval anti air warfare. (Blackmond-Laskey 1996) analyzes 

uncertainty in the model structure and presents approaches for treating and reducing 

model uncertainty. (Lehner et al. 1996) tries to clarify the understanding of uncertainty 

and higher order uncertainty, i.e. uncertainty about uncertainty. (Otto and Wood 1995) 

analyze uncertainty in the selection of a design concept and describes a method to 

quantify the uncertainty. (Plunkett and Dale 1988) categorizes and discusses different 

design models with respect to the real design to improve the trade-off between quality 

and cost. 
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This dissertation defines uncertainty as the probabilistic relation between the 

model response and the actual response. Prediction uncertainty is often overlooked when 

creating a design. The design is frequently optimized according to the design objective 

using the prediction models under the assumption of these models being accurate. 

However, the effects of uncertainty might jeopardize the finely adjusted “optimal” 

design, causing excessive defects and requiring design changes. The causes of 

uncertainty are described in detail below, with an additional emphasis on the creation of a 

prediction model from a finite number of data points. This chapter discusses only the 

causes and effects of uncertainty, but does not present an efficient solution to avoid the 

negative effects of uncertainty. A proposed solution, the flexible design methodology, 

will be presented in Chapter 4. 

3.2 Sources of Prediction Uncertainty 

Three main sources of uncertainty have been identified. The first source of 

uncertainty originates from assumptions, where the information is not known but 

assumed. The second source is simplification, where the information is available but not 

used. The third source of uncertainty is error, where the available information is incorrect 

or used incorrectly. These sources will be explained in more detail below. Note that an 

exact distinction between the sources of uncertainty is not always possible. Also, note 

that within the scope of this dissertation, only prediction uncertainty in the engineering 

design is considered. Other sources of uncertainty are mentioned, but not discussed in 

detail. 
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3.2.1 Assumptions: Lack of Information 

An assumption is information generated without sufficient proof of correctness. 

Assumptions are made when information is created not based on other information. In the 

creation of a prediction model for engineering design, not all required information might 

be known. In order to generate a prediction model, information is often assumed, based 

frequently on human experience and educated guesses. Often, it might be impossible to 

create a prediction model without assumptions, in which case a moderately inaccurate 

model is preferred over no model at all. The assumptions might be incomplete or wrong, 

subsequently reducing the accuracy of the prediction model. If reasonable assumptions 

are used in moderation, the resulting uncertainty might be justified on economic grounds 

compared to the potentially significant effort of proving an assumption valid.  

In fluid dynamics, for example, flows are frequently assumed to be laminar or 

turbulent depending on the Reynolds number, yet the exact behavior of the fluid is 

unknown. Although the linear or turbulent nature of flow can be investigated in more 

detail, the effort frequently exceeds the value of the gained accuracy. Another frequent 

assumption in probabilistic design is the assumption of probability distributions to be 

standard normal. However, statistical validation is typically expensive and time 

consuming. Frequently, the nature of the distribution is ignored completely, with first and 

second moments calculated for a finite sample, according to a normal distribution. 

Another example is the finite element method (Burnett 1988), in which assumptions are 

made about the geometric modeling, numerical truncation, material constitutive 

equations, initial and loading conditions, and physical laws. 
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3.2.2 Simplifications: Disregard of Known Information 

Simplification is the disregard of known information. In the creation of a 

prediction model for engineering design, information might be available yet not included 

in the prediction model. Such simplifications are typically used in order to reduce the 

complexity of the model, as for example in the finite element method loads are often 

assumed to be point loads or uniform load distributions, although it is known that this is 

not the case in reality. However, the small loss of accuracy for these simplifications is 

often accepted compared to the effort of modeling the loads in more detail. (Alvin et al. 

1998) describes a method to quantify uncertainty in structural dynamics, also 

distinguishing between uncertainty and error. Another example is the I-beam presented in 

Chapter 2. The physical model calculates the deflection based on an I-beam cross-section 

with perfect right angles. However, the actual beam will have rounded edges, with known 

standard geometries. Yet, the small resulting inaccuracies of the model are commonly 

accepted compared to the effort of integrating across a more complex section. Another 

example is the simplification of variation. A randomly distributed value is often 

simplified to a deterministic value in order to reduce the model complexity. This 

deterministic value might be the mean of a sample, e.g. for the melt temperature of an 

injection molding process, or it might be an upper or lower limit on a sample, e.g. the 

largest occurring load a structure is expected to withstand. This simplification creates 

inaccuracies, yet the resulting inaccuracies are accepted compared to the effort of 

incorporating distributed variables into a model.  
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3.2.3 Errors: Wrong Information 

While simplifications and assumptions are useful in engineering to reduce the 

engineering effort, errors are generally undesirable. The effect of incorrect information 

and the incorrect use of information during the creation of a prediction model may have 

drastic effects on the accuracy of the model. Depending on the type of error, the model 

uncertainty can range from slightly inaccurate to completely wrong.  

 A prime example of human error is the Mars Climate Orbiter (Pollack 1999). The 

prediction model for the location and course correction of the spacecraft contained errors 

due to the confusion of the unit system. As a result, the craft entered the atmosphere of 

the mars at a too low altitude and was lost. Other errors occur frequently in the 

calculation and programming of prediction models, where for example, a minus sign 

might be forgotten in the prediction equation or prediction software might have a 

programming bug due to a division by zero, which occurs only under certain conditions. 

Errors also can come from faulty data, for example, when a material property in a data 

table does not represent the actual material property. 

3.2.4 Other Causes of Uncertainty 

This dissertation considers only prediction model uncertainty. However, there are 

numerous other sources of uncertainty in an engineering design. These include, for 

example, uncertainty regarding the use of the product by the end user. Specifications are 

used to define the boundaries of possible uses; however, these boundaries may also be 

inaccurate. Thus, the specifications are subject to uncertainty. Other sources of 

uncertainty are based on the market environment, as for example the demand, 
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competition, exchange rates, or interest rates that will affect the commercial success and 

the profitability of a design. (Jordan and Graves 1995) for example investigates the effect 

of market uncertainties on the manufacturing process. However, these sources of 

uncertainty will not be considered within the scope of this dissertation. 

3.3 Characterization of Uncertainty 

3.3.1 Description of Uncertainty 

Uncertainty has to be mathematically described to develop a flexible design 

methodology. Different approaches have been found in literature. (Goodwin et al. 1990) 

for example uses Bayesian networks in the description of model uncertainty. (Otto and 

Wood 1995) use a degree of confidence on the prediction accuracy to measure 

uncertainty. (Atwood and Engelhardt 1996) also analyze uncertainty by using prediction 

intervals and confidence intervals. (Maciejewski 1997) expands the idea of uncertainty 

intervals by using asymmetric model coefficients.  

The description of a prediction error is central to the description of the 

uncertainty. Within this dissertation, the prediction errors E of the design responses Y is 

formulated using a probability density function pdf(E) similar to the formulation of the 

noise as described in section 2.3. (Petkov and Maranas 1997) also uses probability 

function for the modeling of uncertainty in chemical prediction models. The probability 

density functions pdf(E) for the prediction errors E used within this dissertation consists 

of the individual probability density functions pdf(ej) of the error ej of each design 

response yj. The prediction error is the difference between the mean predicted response yj 

and the actual response y*
j as shown in Equation 34. If the prediction error ej is not 
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known exactly, but only as a distribution pdf(ej), the actual response can also only be 

described as an uncertainty distribution pdfU(yj). This uncertainty distribution is the joint 

distribution of the prediction error distribution and the dirac delta function d(yj) as shown 

in Equation 35 and visualized in Figure 12. 
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Figure 12: Predicted Response and Actual Response Distribution 
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3.3.2 Measurement of the Prediction Error 

The uncertainty of the prediction model consists of the mean prediction error and 

the error distribution as shown above in Equation 35 and visualized in Figure 12. 

Therefore, the distribution pdf(ej) of the prediction error ej is required in order to calculate 

the response distribution under uncertainty pdfU(yj). However, this prediction error is 

difficult to estimate analytically. The utilized approach is to evaluate the prediction 

model for a number of samples for which the actual response is known. The actual 

response can be measured from historic data, physical experiments, or by evaluating a 

trusted prediction model. A simple stress model for example can be compared to a more 

accurate finite element analysis or experimental investigation for a given number of 

sample points. If an interpolation or extrapolation was used to create the prediction 

model, it is recommended not to reuse the data points for the model creation, i.e. the 

validation of the model should utilize different data to avoid biasing the prediction 

uncertainty. Information regarding interpolations and extrapolations can be found in 

Appendix C. 

Based on the set of prediction errors for the sample points, a prediction error 

distribution can be created. Standard probability distributions are frequently assumed. 

The goodness of the fit of the distribution on the data can be determined if a sufficiently 

large sample size exists (Devore 1995). If no goodness of fit is evaluated, a distribution 

has to be assumed. (Myers and Montgomery 1995) describes the creation of confidence 

intervals in response surface models using the estimated standard deviation of the 

response and the standard t distribution as shown in Equation 36.  
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Equation 36 

3.3.3 Consequences of Uncertainty 

The distribution of the design responses under uncertainty pdfU(Y) has to be 

evaluated for all design responses Y. This response uncertainty may cause the actual 

design to violate the quality requirements as defined in section 2.4. A design satisfies the 

quality requirement if the mean response yj is at least a certain number of standard 

deviations away from the closest specification limit LSLN
j or USLN

j using a similar 

approach as described by (Myers and Montgomery 1995). The number of deviations is 

described as a and depends on the required percentage of good parts Pa. This can be 

represented as specification limits for the design under uncertainty LSLU
j and USLU

j. The 

calculation of these limits is shown in Equation 37 as derived from the quality 

requirement in section 2.4. The quality requirement is satisfied if Equation 38 is true. 
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Therefore, the probability PL
j and PU

j of violating the upper or lower specification 

limit LSLU
j and USLU

j under uncertainty can be calculated as shown in Equation 39 and 

Equation 40. These probabilities are different from the probabilities used for robust 

design since 1) the uncertainty distributions differ from the noise distributions, and 2) the 

specification limits are tighter. A graphical representation is shown in Figure 13, where 

the predicted response y satisfies the quality requirement, yet the uncertainty distribution 

has a 15% chance of violating the lower specification limit LSLU
j under uncertainty, i.e. a 

15% chance that the yield is too small.. 
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Figure 13: Probability of Violating the Quality Requirement 

It is possible to estimate the joint probability of satisfying all quality requirements 

under uncertainty. With respect to the nomenclature used in the next chapter, this 

probability is nominated as PM
1, representing the expected outcome of not violating any 

quality requirement. This probability can be evaluated as shown in Equation 41, where 

the joint probability of no specification violation with respect to interactions is estimated. 

( )[ ] cov1
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j
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j

n

j

M PPP  

Equation 41 

Although it is possible to optimize the design in order to reduce the probability of 

specification violation under uncertainty, this is not advisable. The noise distributions 

pdfN(Y) and the uncertainty distributions pdfU(Y) differ significantly. Noise variation 

causes every instance of a design to differ from every other instance of a design and 

cannot be adjusted for. Therefore, the design has to be robust against noise, as described 

by the quality requirement. However, it is possible to adjust for prediction uncertainties, 
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as this is a one-time error between the predicted response and the actual mean response of 

the design. Therefore, a design does not have to be robust against uncertainty as it is 

possible to change the design in order to compensate for prediction errors. It is not 

necessary to improve the robustness of the design for uncertainty - as this frequently 

increases the cost of the product – if the design is flexible enough to adjust for the 

prediction uncertainty. The flexible design methodology described in the next chapter 

enables the design team to improve the design flexibility in order to reduce the overall 

expected cost including the cost of possible changes.  

3.4 Example: I-Beam 

The analysis of the effects of uncertainty will be demonstrated on the I-beam 

example introduced in Chapter 2. First, the sources of uncertainty will be determined and 

their magnitude estimated. The handling of the uncertainty will then be described 

according to the above method. 

3.4.1 Sources of Uncertainty 

There are two sources of possible prediction errors influencing the probability 

density function pdf(e1) of the combined prediction error e1 of the deflection y1. First, 

there is uncertainty due to the fitting of a response surface onto a set of data points. This 

error was mentioned in Chapter 2. Secondly, there are some uncertainties due to some 

assumptions of the physical model used in Chapter 2. Both sources are described in detail 

below. 
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3.4.1.1 Response Surface Model Errors 

The response surface method tries to match a second order response surface with 

six parameters to nine data points by minimizing the sum of the squares of deviations 

from the data points (Wolfram 1996). Therefore, the prediction model will not 

necessarily predict the sample points exactly, but rather have a prediction error and may 

not follow the real design space between the sample points. In Chapter 2, the prediction 

models have been compared with the actual models using 10 random sample points 

within the design space. For each sample point, the error of the deflection e(y1) was 

determined, and the mean and standard deviation of the error was estimated as shown in 

Table 11. 

Table 11: Prediction Error Mean and Deviation 

Prediction Nom. Mean Error Error Standard Deviation 

Deflection y1 0.4 0.45 

 

Within this dissertation, the error distribution of the deflection is assumed to be 

normal distributed. A closer investigation reveals that the actual true mean error e1 for the 

deflection y1 is 0.1184mm and the standard deviation is 0.452mm, using Equation 42 and 

Equation 43. 
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In addition, the error distribution cannot be assumed to be standard normal 

distributed. Figure 14 shows a histogram of the prediction error for 1000 random 

samples. It can be seen clearly that the prediction error is not standard normal distributed. 

However, in order to simplify the calculations for the simple example, a normal 

distribution is used to describe the prediction error probability density function.  
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Figure 14: Prediction Error Histogram for 1000 Samples 

3.4.1.2 Physical Model Assumptions 

However, there exist also some assumptions regarding the physical model as 

described in Chapter 2. For example, the cross section of the I-beam is assumed to have 

all corners at right angles. However, an extruded beam would most likely have rounded 
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corners or chamfers. Rounded edges are easier to manufacture, and also they avoid 

unnecessary stress concentrations. The exact moment of inertia can be evaluated by 

integrating the distance from the centerline over the cross sectional area.  

In addition, the beam may be modified in order to attach the beam to the fixed 

support or to attach the load to the beam. Depending on the attachment type the stiffness 

of the beam may be increased due to welding additional material on the beam or may be 

weakened due to holes drilled for attachments, and the deflection of the beam may 

change. However, as neither the information regarding the rounded edges nor the 

information of the modifications is detailed in the physical example, the deflection 

predicted in the physical model will differ from the actual deflection occurring in a real 

beam. This deflection error is also estimated to be normal distributed with a mean of zero 

and a standard deviation of 0.05mm.  

3.4.1.3 Combined Prediction Uncertainty 

The combined prediction uncertainty is the sum of all model and prediction 

uncertainties. As both are assumed to be normal distributed, the combined error 

distribution pdf(e1) will also be normal distributed. This combined error has a mean as 

described in Equation 44 and a standard deviation as described in Equation 45. 

mmE 4.00.04.01 =+=µ  

Equation 44 
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mmE 4528.005.045.0 22
1 =+=σ  

Equation 45 

3.4.2 Uncertainty Evaluation 

The I-beam is now evaluated with respect to uncertainty. The initial design is the 

design with the optimal part cost subject to noise as shown in Table 12, satisfying the 

quality requirement in Equation 46. However, this design does not include the effects of 

uncertainty.  

Table 12: Optimal Beam Design under Noise 

Variable Nom. Value Response Nom. Value 

Beam Width x1 34.8 Deflection y1 2.893 

Modulus x2 182,150 Marginal Part Cost CM 1.64 

 

899.2034.0331 =⋅−=⋅−= NNU USLUSL σα  

Equation 46 

If the mean prediction error is included, the response distribution has a mean 

deflection of 2.57mm, and a standard deviation of 0.453mm. Due to the large mean 

prediction error, there is an 81% chance that the prediction uncertainty will violate the 

quality requirement as visualized in Figure 15.  
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Figure 15: I-Beam Prediction Error 

It is possible to improve the beam design down to a zero possibility of violating 

the quality requirement due to uncertainty. However, this design would cost significantly 

more than the original design shown in Chapter 2. In this case, it may be more economic 

to change the design once the prediction error is known. This will be described in the 

flexible design methodology in the next chapter. 

3.5 Conclusions 

The uncertainty of a prediction model may have a significant impact on the 

quality of the product. However, current methods for handling uncertainty are insufficient 

in generating a trade-off between the cost of the part and the cost of possible changes. 

The next chapter will discuss a method to select an economic design robust against noise, 

yet allow a flexible design change towards a design robust against noise and uncertainty 

in case the uncertainty causes an undesirable design. This avoids the additional cost 

required to reduce the sensitivity of the design to prediction uncertainty. The 
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methodology aims to reduce the overall cost of the design including the cost of possible 

design changes. 

 



 

         CHAPTER 4  

FLEXIBLE DESIGN METHODOLOGY 

4.1 Introduction 

The goal of robust design methodologies is to reduce the sensitivity of the designs 

to performance variation. Although robust design methodologies consider noise, they 

usually do not account for uncertainties and inaccuracies in the predictions of the design 

performance. As such, the finely tuned robust design might violate specifications because 

the underlying predictions lack the necessary accuracy. It is possible to include the 

uncertainty variation into the robust design evaluation to reduce the sensitivity to noise 

and uncertainty, yet this could increase the cost of the product while generating little 

value for the customer. The described methodology aims to minimize the expected cost 

of the design including development uncertainties. 
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Figure 16: Flexible Design Incentive 
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Figure 16 shows a predicted feasible design region within which a design is 

assumed to be feasible. From this predicted design region, a design is selected according 

to an objective function. The objective function is shown in the graph as the diagonal 

contour lines. However, the actual and predicted design windows might not coincide due 

to uncertainties in the development process. If the selected design lies outside of the 

actual design window, a design change is necessary, even if the model predicted this 

design to be optimal. This required design change will result in unforeseen development 

costs, and may also alter the performance and cost of the product. 

Within this methodology, the possible expected outcomes are analyzed for a 

selected initial design. For any given defect, there exists the possibility of changing 

numerous design parameters in order to resolve the defect. The flexible design 

methodology investigates all possible design changes for all possible expected outcomes 

to assist the designer to reduce the overall expected cost of the design including possible 

future design changes. 

Figure 17 gives an overview of the flexible design methodology. The method 

starts by selecting an initial investigated design, for which prediction models are known. 

The possible expected outcomes for this design are determined and their likelihood of 

occurrence evaluated. Based on these expected outcomes, the possible design changes are 

investigated, and their ability to resolve the expected outcome analyzed. A probabilistic 

evaluation determines the likelihood of a design change occurring. The overall expected 

cost of the design is evaluated. If an ideal trade-off between the part cost and the risk of 
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design changes is found, the design will be produced, otherwise the product and process 

is redesigned and the flexibility is evaluated for the redesigned design. 
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Figure 17: Methodology Outline 

The described method builds on other related research. (Thornton 1999b; 

Thornton 1999c; Thornton et al. 1999) describes the changes in the design variation as 

the model uncertainties are reduced during the design development, and new information 
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becomes available.(Yoshimura and Nishikawa 1996) considers a flexible design that can 

adapt to changes on the basis of a trade-off analysis of a Pareto optimal set. (Jordan and 

Graves 1995) analyzes manufacturing flexibility to adapt the manufacturing capacity to 

changing market demand. This chapter is also based, in part, on previous work about the 

flexible design methodology (Roser and Kazmer 1999)  

4.2 Expected Outcomes 

Each design has a possibility of being defective. As described in Chapter 3, a 

design is considered infeasible if one or more response yj is outside of the specification 

limit LSLU
j and USLU

j of the uncertainty. This condition represents a high likelihood that 

the design will violate the noise specification limits LSLN
j and USLN

j and may 

subsequently require a design change. Therefore, it is necessary to list all possible 

expected outcomes of the design and evaluate the probability of each expected outcome 

occurring. 

4.2.1 Determination of All Possible Expected Outcomes 

A design response yj with a two-sided specification limit LSLU
j and USLU

j could 

have three different expected outcomes under uncertainty. It is possible that the response 

yj violates the lower specification limit for uncertainty LSLU
j. Second, it is also possible 

that the response yj violates the upper specification limit for uncertainty USLU
j. Third, it 

is possible that the response yj violates none of the specification limits LSLU
j and USLU

j. 

This yields for n responses 3n possible expected outcomes. 
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These expected outcomes are summarized in a matrix M. This matrix consists of 

one column for each of the n specified response yj and one row for each of the 3n possible 

expected outcomes. A single expected outcome is represented by one row Mk of the 

matrix M. The matrix element Mk,j contains a -1 one if the expected outcome Mk violates 

the upper limit USLU
j for a response yj, representing the need to reduce the response value 

in order to obtain a feasible design. The matrix element Mk,j contains a +1 if the expected 

outcome Mk violates the lower limit LSLU
j for a response yj, representing the need to 

increase the response value in order to obtain a feasible design, and the matrix element 

Mk,j contains zero if the specification is not violated.  
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Equation 47 

For two specified design responses yj there are nine resulting expected outcomes 

Mk as explicitly shown in Equation 47. The first expected outcome M1 represents a 

design, where the lower and upper specification limits under uncertainty for both 

responses yj are satisfied. The second expected outcome M2 represents a violation of the 

upper specification limit for the second response y2, while the first response y1 is within 
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the given specification limits. The last expected outcome M9 represents both responses yj 

violating the lower specification limits LSLU
j under uncertainty. The next sections discuss 

the probability of a certain expected outcome occurring. 

4.2.2 Probability of Violating One Specification 

As described in Chapter 3, the response yj including the prediction error ej has to 

be within the lower and upper specification limits for the uncertainty LSLU
j and USLU

j. 

This prediction error is known only as a probability distribution pdf(ej), creating a 

probability distribution of the response under uncertainty pdfU(yj). The probability PL
j of 

a response yj violating the lower specification limit LSLU
j and the probability PU

j of 

violating the upper specification limit USLU
j as shown in Chapter 3 is visualized in Figure 

18. Note that for one-sided specifications the probability of violating the other side is 

zero, as a nonexistent specification cannot be violated. This can also be represented 

mathematically by setting the corresponding specification to ≤¶ or by the removal of the 

case from the expected outcome matrix M. 
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Figure 18: Defect Probability 
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4.2.3 Probability of a Expected Outcome Occurring 

The probability PM
k of a certain expected outcome occurring can be evaluated 

from the above probabilities PL
j and PU

j of violating the lower or upper specification 

LSLU
j and USLU

j for a given design response. This probability is the combination of the 

individual probabilities of specification satisfaction or violation depending on the 

expected outcome as shown in Equation 48. Due to the feasibility requirement for the 

initial design, the probabilities PL
j and PU

j of violating the lower and upper specification 

limits LSLU
j and USLU

j are exclusive. Therefore, the probability of a response yj being 

within the specified limits LSLU
j and USLU

j is the difference between certainty and the 

sum of the violation probabilities PL
j and PU

j. 
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Equation 48 

Figure 19 visualizes the Bayesian network of the different expected outcomes for 

a selected initial design. There are 3n different expected outcomes Mk, each having a 

probability of occurring of Pk. The next section will describe the possible design changes 

to resolve the different expected outcomes Mk. 
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Figure 19: Expected Outcomes 

4.3 Deterministic Design Change Analysis 

The previous section determined the probability PM
k of different expected 

outcomes Mk occurring. This section will now investigate different design change options 

for every expected outcome Mk. For every possible design change Sk,l for every expected 

outcome Mk, the possible design improvement is determined, and the probability of 

satisfying all specifications PD
k,l is evaluated. Based on PD

k,l the probability of a change 

being utilized PC
k,l is evaluated.  

Please note that for this deterministic design change analysis, it is assumed that 

the outcome of a design change is known. Hence, there is no uncertainty if a design 

change will resolve a defect. This is an optimistic approach. In reality, the outcome of a 
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design change is also subject to uncertainty. Therefore, an improved design change 

analysis under uncertainty is provided in Chapter 5. However, this improved analysis 

requires knowledge regarding the uncertainty in a design change. Since this information 

will not always be available, two design change analysis methods are described in this 

dissertation. The deterministic design change analysis method is described in this chapter, 

and the design change analysis under uncertainty is described in Chapter 5. Depending on 

the availability of the information of the design change uncertainty, either method may be 

utilized. 

4.3.1 Design Change Options 

In order to determine the options to resolve a expected outcome Mk, possible 

combinations of changes in the design variables are analyzed with respect to cost and 

impact on the design performance. If there exist m investigated design variables, there 

will be 2m possible design change combinations Sl, representing 2m subsets of the m 

dimensional design space. As each additional investigated variable doubles the number of 

investigated design changes, the computation time will increase exponentially. Therefore, 

only significant variables should be included in the methodology. An example set S of 

possible design changes Sl for three design variables is shown below in Equation 49. 
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Equation 49 

Figure 20 represents the design space and subspaces for the above set of design 

changes S. The first change option S1 represents changing no variables of X and keeping 

the initial design. This is represented by the zero dimensional sub space in Figure 20. The 

second design change option, S2 represents only changing variable x3, while keeping the 

variables x1 and x2 at the initial value. This is represented as the vertical one dimensional 

sub space in Figure 20.  
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Figure 20: Design Space and Sub Spaces 

4.3.2 Response Change 

Figure 21 shows an overview of the possible design change options. These design 

change options are identical for all expected outcomes. However, the actual design 

changes will differ from each other. The following sections describe the criteria used for 

the design change evaluation. It is important to note that the prediction error is not known 

exactly. Hence, it is not known what change is necessary. Rather, the described method 

estimates the likelihood of changes based on the information available at the design 

development phase.  

72 



Initial
Design

Expected Outcomes

PM
k

PM
1

PM
2

M1

M2

Mk

M3 -1n

M3n

PM
3 -1n

P 3n
M

Design
Change
Options

S1

S2

Sl

S2 -1m

S2m

PS
k,l

PS
k,2

PS
k,1

PS
k,2 -1m

PS
k,2m

 

Figure 21: Design Change Options 

The goal of a possible design change Sl is to move the responses yj violating the 

specification limits LSLU and USLU in a direction away from the violated specification 

limit, while having the non-violated responses within the specification limits LSLU and 

USLU. This change will move the actual response away from the violated specification 

limit. It is important to point out, that the design change optimization still uses the 

original prediction model. If the prediction model shows inverse trends compared to the 

actual design space, then the validity of the design change degrades. The methodology is 

able to handle offset errors, but not topological errors in the prediction model. 
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4.3.3 Conditional Probability of Defect Satisfaction 

The design change aims to move the responses away from the violated 

specifications while keeping the non-violated responses within the specifications. The 

final design change cannot be determined during the design development stage since the 

exact prediction error is not known. However, depending on the expected outcome, 

assumptions can be made regarding the uncertainty distribution. This is visualized in 

Figure 22, where a prediction uncertainty distribution may violate the upper or lower 

specification limit. Depending on the type of specification violation, certain prediction 

errors can be excluded, and the uncertainty distribution is reduced. For example, if the 

expected outcome assumes a violation of the lower specification limit, the possible 

prediction errors are reduced to the left tail of the distribution as shown in graph (a) of 

Figure 22. If the expected outcome assumes a violation of the upper specification limit, 

the uncertainty can be expressed as the right tail in graph (c). If neither limit is violated, 

the uncertainty distribution is the section between the limits as shown in graph (b). 

Furthermore, it has to be ensured that the area underneath each individual probability 

distribution integrates to one. It is important to point out that the conditional distributions 

assume that a fixed prediction error measured at one point in the design space to be valid 

for the complete design space. However, the prediction error is likely not to be constant 

for the complete design space but may vary throughout the design space. After the 

creation of the physical design, it is recommended to improve the prediction rather than 

to assume a fixed error. 
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Figure 22: Prediction Error Distribution for Satisfaction or Violation 

Due to the design dependencies, moving one response in one direction might 

move another response in an undesired direction, and potentially violate another 

specification. Therefore, each of these resulting response distributions might violate 

either the lower specification limit or the upper specification limit under uncertainty after 

the design change. The probability of violating no specification limit can be described as 

an integral of the response distribution between the specification limits. However, it is 

also possible to describe it in terms of the original design violating the lower and upper 

specification limits PL
,j and PU

j, and the current changed design violating the lower and 

upper specification limits PL
k,l,j and PU

k,l,j, where the indices k, l and j stand for the 

expected outcome Mk, the design change Sl and the design response yj. This is shown in 

Equation 50, Equation 51, and Equation 52 where the probability PD
k,l,j of satisfying a 
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specification after a design change is evaluated for the condition of previously violating 

the upper limit, the lower limit, and no limit under uncertainty. If the probability PM
k of 

the expected outcome occurring is zero, then this defect never occurs and all subsequent 

probabilities will be zero.  
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Equation 52 

These equations consist out of two parts. The likelihood of the conditional 

uncertainty distribution violating the lower specification limit and the conditional 

probability of violating the upper specification limit under uncertainty is determined. The 

probability of satisfying the specifications is the remainder to certainty. In Equation 50, 

for example, the probability of satisfying all specification limits is one minus the 

probability of violating any specification limits under uncertainty. This probability 

consists of the probability of violating the upper specification limit and the probability of 
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violating the lower specification limit respectively based on the conditional uncertainty 

distribution. 

Based on the above probability of resolving one specification violation PD
k,l,j the 

joint probability of resolving all specification violations PD
k,l for a given expected 

outcome Mk and design change Sl has to be calculated. This is shown in Equation 53.  
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Equation 53 

The design change aims to improve the probability PD
k,l of satisfying all 

specifications given the current expected outcome Mk by means of a given design change 

Sl. However, there are certain exceptions, where the probability of resolving all defects 

PD
k,l is known beforehand. Hence, it is not necessary to evaluate the design changes for 

these cases.  

4.3.4 Known Probabilities of Specification Satisfaction 

The following method will evaluate the possible design changes including the 

cost of the design change and the probability of the design change occurring. However, 

out of the 2m design changes for the entire 3n expected outcomes some cases can be 

determined beforehand using common sense. These exceptions are described below. 

If a expected outcome Mk does not exist, then the probability of satisfying all 

specifications after a design change PD
k,l for all possible design changes Sl for this 

expected outcome Mk has no influence on the design evaluation. Subsequently the 
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probability of satisfaction PD
k,l is set to zero for all design changes Sl for expected 

outcomes Mk with zero probability of occurrence PM
k as shown in Equation 54. The 

computation time can be reduced by not analyzing the design changes for a nonexistent 

expected outcome. 

lPifP M
k

D
lk ∀== 00,  

Equation 54 

Another expected outcome Mk for which the design change is known beforehand 

is the first expected outcome M1, representing the case where all design variables Y are 

within the given uncertainty limits LSLU and USLU. If there is no violation of any 

specification limits under uncertainty, then there exists no need to change the design. 

Hence, the design change option for the first expected outcome M1 is not to change the 

design S1,1. Hence, the probability PD
1,1 of satisfying the (non-existent) defect is 1, and 

the probability of satisfying the defect PD
1,l by means of any other design change option 

S1,l is zero. 
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Equation 55 

Finally, if a design is defective, but no change is performed, then a design failure 

occurs. This probability of failing to create a feasible design will be discussed in more 

detail in section 4.3.8. 
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4.3.5 Design Change Optimization 

The design change aims to improve the probability of satisfying all defects PD
k,l 

for a given expected outcome Mk by means of a given design change Sl. This optimization 

has to be performed for every design change option Sl for every expected outcome Mk 

excluding the exceptions described in section 4.3.4.  
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Equation 56 

4.3.6 Cost of the Design 

In order to select between different design changes Sl capable of resolving a given 

defect Mk, the marginal cost including the amortized cost of the design change. This 

analysis requires the structuring of the tasks necessary to change a design parameter. This 

model structure is related to design task modeling, where a development process is 

divided into sub tasks. (Steward 1981) describes the design structure matrix as an 

approach to manage complex design systems. This approach is extended for the change 

cost analysis.  

The relation between the design variables xi and the tasks ξq required for changing 

these design variables are represented in a matrix ξ. This matrix consists of one row for 

each design variable xi, and one column for each possible task ξq. If a change in a design 
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variable xi requires the execution of task ξq, a one will be inserted in the matrix ξ in row i 

and column q. Equation 57 shows a matrix ξ representing the relation between three 

design variables and five tasks. 
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Equation 57 

A task is required if at least one changed design variable requires the performance 

of the task. This is done by multiplying the vector of the design change cost with the 

matrix ξ. The resulting matrix elements have values larger than zero for each task ξq 

required to execute the set of variables Sl. Furthermore, each task ξq creates a cost Cξ
k,l 

during execution. The change cost CC
k,l (per unit) of the design change evaluates as the 

sum of the cost of all executed tasks divided by the production volume V: 
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Equation 58  

Please note that the above method for determining the cost of a design change is a 

very general approach, and estimates the change cost merely based on the changed 

variables. The change cost might differ depending on the change direction or magnitude, 
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for example if a hole diameter in a tool has to be reduced rather than increased. These 

asymmetric cost relations are not modeled within this system. Improved methodologies 

for change cost estimations can be developed and used within this methodology. (Martel 

1988) for example describes the cost of an engineering change order in printed circuit 

design as a range from $1,200 to $6,000, with an average of 30 changes per week for an 

average company. This calculates to about $4.5 million per year for an average company. 

(Lavoie 1979) also describes non-technical considerations in design changes, as for 

example the behavior of the market and legal complications. (Lenane 1986) also 

describes the cost of defects, depending on the effort required to fix the design as for 

example rework or excessive material handling. (Lundvall ) categorizes the cost of 

defects and describes methods on how to measure and improve quality.  

The marginal part cost CM
k,l for a given design change Sl and a given failure mode 

Mk is required as part of the initial functional relations needed to perform the flexible 

design methodology. Together with the change cost CC
k,l it is now possible to evaluate 

the total cost CT
k,l of the design change Sl for a given failure mode Mk as shown in 

Equation 59. 

C
lk

M
lk

T
lk CCC ,,, +=  

Equation 59 

4.3.7 Probability of Design Change  

After performing the above optimization for all possible design changes Sl and all 

possible expected outcomes Mk, a total of 3n times 2m design changes are evaluated. The 
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probability of satisfying all specifications PD
k,l and the total cost of a changed design CT

k,l 

can now be used to determine the likelihood of selecting a given design change from the 

set of possible design changes S for a given expected outcome Mk. With respect to 

economic considerations, the different design changes Sl for a given expected outcome 

Mk are sorted by the total cost CT
k,t, where index t ranging from 1 to 2m refers to the 

previously unsorted index l as shown in Table 13. 

Table 13: Sorted Design Changes for Expected Outcome Mk 

Design Change Total Cost Sorting Criteria Probability of Satisfaction

Sk,1 CT
k,t1 - PD

k,t1 

Sk,2 CT
k,t2 CT

k,t2>CT
k,t1 PD

k,t2 

…    

Sk,t CT
k,tl CT

k,tl>CT
k,tl-1 PD

k,tl 

    

Sk,2m CT
k,t2m CT

k,t2m>CT
k,t2m-1 PD

k,t2m 

 

For a given prediction error E, there might be more than one design change Sk,t 

capable of resolving the defect. With respect to economic considerations, the design 

change with the least total cost CT
k,tl would be selected from the list of possible design 

changes S for a given expected outcome Mk to resolve the defect. Subsequently, a design 

change would only be selected if the change Sk,tl resolves the defect and all more 

economic design changes do not resolve the defect. The calculation of the probability 

PS
k,t1 of a design change occurring is shown in Equation 60. 
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To calculate the actual value of selecting a design change Sk,tl from the list of 

design changes S for a given expected outcome Mk, interactions have to be taken under 

consideration. Independence cannot be assumed. This is shown in Equation 61. 
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Equation 61 

However, it is possible to simplify Equation 61 using a reasonable dependence 

assumption. Figure 23 shows one response distribution for an initial design and two 

possible design changes. It can be seen that design change two will resolve all defects 

which where also resolved by design change one. Hence, the probability of change two 

resolving defects not resolved by change one is the difference between the two 

probabilities as shown in Equation 62. 
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Figure 23: Interaction Assumption 
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Equation 62 

The probability of a certain design change occurring PC
k,t depends on the 

probability of selecting this design change PS
k,t from the list of possible design changes S 

84 



for a given expected outcome Mk and the joint probability of the expected outcome 

occurring PM
k: 

tkPPP S
tk

M
k

C
tk ,,, ∀⋅=  

Equation 63 

4.3.8 Probability of Design Failure 

For every expected outcome Mk there exists a probability of not being able to 

resolve the defect. This probability of not being able to satisfy the requirements is 

represented as the probability of not changing the design PS
k,1 despite a defect for the 

given expected outcome Mk. Due to the significance of this term on the success of the 

design this is nominated as the probability of failure PF
k for each expected outcome Mk as 

shown in Equation 64.  
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Equation 64 

As a single expected outcome might not be resolved, the probability of design 

failure PF for all expected outcomes M can be determined as shown in Equation 65. The 

probabilities of a certain design change are summed over all expected outcomes and 

design changes, excluding the first expected outcome and the first design change.  
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Equation 65 

The probability of design failure represents the likelihood of the initial design not 

being able to satisfy the quality requirements including the possibility of a design change, 

based on the available knowledge during the design development stage. Therefore, a 

design failure as described in the above context does not necessarily mean the inability to 

create a design that satisfies the quality requirements. Rather, it represents the inability to 

satisfy the quality requirements using the given design system and variation information.  

As additional knowledge is gained during the development of the design, better 

information regarding the prediction error and noise distribution becomes available, and a 

better prediction about the likelihood of satisfying the quality requirements can be made. 

The information regarding the probability of failure is restricted to the modeled design 

space. It may be possible to adjust design parameters not modeled within the 

methodology, or to extend the range of the design variables. In addition, a change in the 

design concept might be able to resolve the defect despite large prediction errors. Finally, 

a relaxation of the quality requirements may resolve the defects. Therefore it is important 

to note that the probability of design failure merely represents the inability of the given 

design system using the current uncertainty information to satisfy the specified customer 

requirements. 

As the expected cost CE is measured monetarily, a cost has to be related to the 

design failure CF. This cost occurs if a defect design remains unchanged as shown in 
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Equation 66. The cost of failure represents the additional effort required to expand the 

design model, investigate a different design concept, or relax the quality requirements. It 

is also possible to cancel the design project, in which case loss of market share, sunk 

development cost, penalty fees, and loss of reputation might occur.  The estimated failure 

cost is outside the scope of this research. Thus, it is necessary to gather estimates from 

human expertise.  

11, >∀= kCC FT
k  

Equation 66 

4.4 Evaluation 

The results of the flexible design analysis can now be used to draw conclusions 

regarding the flexibility of the design. The results can be used to estimate the expected 

cost of the design CE and the likelihood of changing a design variable xi or violating a 

design response yj. 

4.4.1 Expected Cost 

The expected cost CE is the average cost of the design including all possible 

changes and failures for all expected outcomes. It is important, however, to note that this 

cost is a probabilistic average of different expected outcomes and design changes. As 

only one design is created, there will be only one certain expected outcome with one 

selected design change. This case is not known until the design is created and the actual 

prediction errors E occur. Therefore, the design might cost more or less than expected, 

yet the average cost will be the expected cost CE. The expected cost can be calculated for 
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each expected outcome CE
k, and then for the overall design. Equation 67 shows the 

relation between the expected cost CE
k and the cost and probabilities of the individual 

design changes for a given expected outcome Mk. The overall expected cost CE for the 

initial design is the sum of all costs CE
k as shown in Equation 68. 
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Equation 68 

The expected cost is risk neutral, as the flexible design methodology tries to 

balance the cost of the design with the risk of a design change. However, depending on 

the design project, the company and the market environment, some design projects use an 

optimistic, i.e. risk prone approach, where a low part cost is more important than a 

possible design change, whereas other design projects might be pessimistic, i.e. risk 

adverse, where the cost of the design is less important than the possible design changes. 

(Thornton 1999a) presents an excellent overview of optimistic and pessimistic design 

under uncertainty and describes which approach might be suitable depending on the 

design environment. This depends in part on the capability of the manufacturing process. 

The usage of the process capability has been investigated by (Tata and Thornton 1999). 
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4.4.2 Probability of Design Variable Change 

Using the estimated probabilities, it is possible to determine the likelihood of 

changing a certain design variable xi. It is also possible to distinguish between the 

likelihood of an increase and a decrease of the value of the design variable. Therefore, the 

probability PX
i of changing the design variable xi can be evaluated. This evaluation is 

based on the probability of a certain design change PC
k,t, which is known for all expected 

outcomes Mk and design changes Sl. Hence, it is possible to evaluate the probability of a 

variable changing PX
i as the sum of the probabilities PC

k,t of design changes Sk,t including 

this variable xi as shown in Equation 69, where Sk,tl,i equals one if xi is changed and zero 

otherwise. 
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Equation 69 

4.4.3 Probability of Design Response Defect 

Other valuable information about the design flexibility includes the probability of 

a defect PY
j due to a certain response violation yj. This probability PY

j is simply the sum 

of the probabilities PL
j and PU

j of violating the lower and the upper specification limit 

LSLU and USLU under uncertainty described in section 4.2.2 and shown in Equation 70. 

U
j

L
j

Y
j PPP +=  

Equation 70 
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4.5 Design Improvement 

The flexible design methodology generates an objective including the marginal 

cost of the design and the cost due to possible design changes. Using the described 

methodology, it is now possible for the designer to improve the expected cost by 

increasing the flexibility of the design. Improved designs reduce the probability of costly 

design changes. A search algorithm can be utilized to determine the minimum expected 

cost, representing the design with the smallest overall expenses with respect to possible 

design changes. While there is no exact method developed to recommend an improved 

design, it is recommended to reduce the probability of changing design variables with a 

large change cost. This redesign is likely to increase the marginal cost, yet may reduce 

the overall expected cost. Secondly, it may be possible to reduce the increased marginal 

costs by adjusting design variables with a small change cost. Overall, this approach 

increases the design flexibility, where design variables with a large change cost are likely 

to remain unchanged, yet variables with a small change cost add degrees of freedom to 

the design to adjust for uncertainty and minimize cost. 

4.6 Example: I-Beam 

The flexible design methodology will be demonstrated on the I-beam example. 

The optimal design from chapter 2 will be analyzed using the flexible design 

methodology. The objective is to reduce the expected cost by reducing the sensitivity to 

uncertainty, i.e. trying to achieve a trade-off between the cost of the design and the 

likelihood and cost of the changes. However, before the beam can be analyzed using the 

flexible design methodology, some additional information is required. 
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4.6.1 Assumptions 

The flexible design method is demonstrated using the response surface models 

introduced in Chapter 2. These response surface models are assumed to have prediction 

accuracy as described in Chapter 3, with a mean error of 0.4mm and a standard deviation 

of the error distribution of 0.45mm. The flexible design methodology also requires the 

cost of changing a design variable. Fixed change costs are assumed within this example. 

A change in the beam height x1 would require retooling of the extrusion tool. This is 

assumed to cost $15,000, giving a change cost of $0.30 per part for 50,000 parts. A 

change in the material x2 is significantly less expensive, with a total cost of $50, giving a 

change cost of $0.001 per part. The cost of changing both the beam height and the 

modulus is the sum of the two individual changes, equal to $0.301 per part. The cost of a 

design failure, i.e. the inability to satisfy the design using the given design relations and 

therefore requiring a redesign, is assumed to be $250,000, giving a failure cost CF of $5 

per part.  

4.6.2 Flexible Design Evaluation 

The flexible design methodology will be demonstrated using the initial design 

shown in Table 14. The values of the design responses are shown in Table 15. As derived 

in Chapter 2, this design has the least marginal cost that meets the quality requirements. 
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Table 14: Initial Design Variables 

Design Variable Nom. Value 

Beam Height x1 34.8mm 

Modulus x2 182,200 N/mm2

 

Table 15: Initial Design Responses 

Design Response Nom. Value 

Deflection Mean y1 2.89mm

Marginal Cost CM $1.64 

 

4.6.2.1 Expected Outcomes 

The I-beam example has only one response with an upper specification limit. 

Therefore, there exist only two possible expected outcomes. Either the design satisfies all 

quality requirements, or the design violates the upper specification limit of the deflection. 

These two expected outcomes are visualized in Figure 24. 
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Figure 24: I-Beam Expected Outcomes 

The upper specification limit USLU under uncertainty is three standard deviations 

away from the specification limit under noise USLN. For the initial design, the revised 

specification limit USLU is 2.899mm. Combined with the uncertainty distribution, this 

gives the probability of 80.8% of violating the upper specification limit under 

uncertainty. Therefore, the probability PM
2 of the second expected outcome M2 occurring 

is 80.8%. Subsequently, the probability PM
1 of the first expected outcome M1, i.e. no 

defect, occurring is 19.2%. 

4.6.2.2 Design Changes 

There are four distinct design changes possible for the I-beam example. These 

change options are listed in Table 16. With two expected outcomes, this would generate 

eight possible combinations of defects and changes. The first expected outcome 

represents the situation where no specification is violated. Therefore, no change is 

necessary, and the design will not be changed. For the second expected outcome, where 

the specification limit is violated, the design has to be changed. The option not to change 
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the design is only valid if no possible change would resolve the defect. A graphical 

overview of the possible design changes for the possible expected outcomes is shown in 

Figure 25. These possible expected outcomes and design changes are also indexed in a 

table as shown in Table 17. This table form is next utilized to demonstrate the flexible 

design methodology. 

Table 16: I-Beam Design Changes 

Change Index Changed Variables 

No Change S1  

Height S2 x1 

Modulus S3 x2 

Height and Modulus S4 x1, x2 
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Design

Expected
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Design
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2,2
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2,4

PS
2,3

S3

S4

No Changes

Change Height

Change Modulus

Change Height
and Modulus

S1 No Change,
FailurePS

2,1

 

Figure 25: I-Beam Design Change Options 
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Table 17: I-Beam Design Change Options 

Index Defect Change Comment 

1 M1 S1 No Defect, Unchanged Design 

2 M2 S1 Deflection Defect, No Change: Design failure 

3 M2 S2 Deflection Defect, Change Height 

4 M2 S3 Deflection Defect, Change Modulus 

5 M2 S4 Deflection Defect, Change Height and Modulus

 

4.6.2.3 Design Change Optimization 

Each design change is optimized to maximize the probability of satisfying all 

specifications given the current expected outcome as described in 4.3.3. For five different 

combinations of expected outcomes and design changes, the set of optimizations yield 

five designs. These designs are listed in Table 18.  

Table 18: I-Beam Design Change Values 

Index Defect Change Height Modulus Total Cost 

1 M1 S1 34.8 182,200 1.64 

2 M2 S1 n/a n/a 5.00 

3 M2 S2 54.6 182,200 2.32 

4 M2 S3 34.8 185,000 1.65 

5 M2 S4 54.6 185,000 2.33 
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The probability of selecting a certain design change from the possible design 

changes for a given expected outcome depends on the probability of resolving the defect 

and the cost of the design. Subsequently, the probability of this change occurring can be 

calculated with respect to the probability of the defect occurring. An overview is given in 

Table 19. The rows in this table refer to the same rows in Table 18. The order in which 

the rows are discussed is selected to improve the understanding of the theory. Note, that 

the probability of the expected outcome is identical for case 2, 3, 4, and 5, as this is the 

same expected outcome of violating the upper specification limit for the deflection under 

uncertainty. 

Table 19: I-Beam Design Change Probabilities 

Index Probability 
of Expected Outcome

Total Cost Probability 
of Satisfaction

Probability 
of Occurrence 

Probability
of Change 

1 19.2 1.64 100.0 100.0 19.2 

2 80.8 5.00 n/a 0.00 0.00 

3 80.8 2.32 100.0 94.9 76.7 

4 80.8 1.65 5.1 5.1 4.1 

5 80.8 2.33 100.0 0.00 0.0 

 

The first row represents the option not to change if there is no defect. As this is 

the only option, it has a likelihood of 100% of being selected from the possible options. 

As the expected outcome has a probability of 19.2% of occurring, there will be a total 

probability of 100% times 19.2% equals 19.2% of this combination of expected outcome 

and design change occurring.  
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The fourth row is the most economic possible design change for the given 

expected outcome. As economic design changes are preferred, it is preferable to resolve 

the defect using this design change if possible. As this change resolves only 5.1% of the 

defects, it is selected only in 5.1 % of the cases. As the expected outcome occurs with 

80.8% likelihood, there is only a 4.1% chance of this change and expected outcome 

occurring. 

The third row is the second most economic design change. This change is used 

only if the fourth design does not resolve the defect. The probability of occurrence is the 

probability of resolving the defect if the fourth case does not resolve the defect. The third 

case therefore has a probability of being selected from the possible changes for a given 

expected outcome of 94.9%, and subsequently a probability of 76.7% of occurring. 

The fifth row is only utilized if all other changes do not resolve the problem. As 

this case of changing both design variables does not improve the probability of resolving 

the defect, it will not be selected.  

Finally, the second row represents the likelihood of design failure, where the 

design remains unchanged despite a defect. This case only occurs if all other design 

changes for this expected outcome fail to resolve the defect. Therefore, the probability of 

this design change for this expected outcome is the difference between and 100% the sum 

of all other probabilities of occurrence for the given expected outcome. In this case, there 

is a probability of 0.00040% of not being able to resolve the defect if a defect occurs. 

Together with the probability of the defect occurring this gives an overall probability of 

0.00032% of design failure, which for all practical matter reduces the probability of 
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failure to approximately zero. It should be noted, however, that even small failure 

probabilities can have significant impact on the design evaluation when failure costs are 

very high. 

4.6.2.4 Expected Cost 

The expected cost, CE, is shown in Table 20. The I-beam example has an expected 

cost of $2.17 for the initial design as described above. An overview of the flexible design 

analysis is shown in Table 21. The results indicate that there is only a 19.2% likelihood of 

the design satisfying the quality requirement. There is an 80.8% change that the design 

violates the quality requirement. Most importantly, there is a zero probability of 

encountering a design flaw, which cannot be compensated.  

Table 20: I-Beam Expected Cost 

Index Total Cost Probability 
of Change 

Product of 
Cost & Probability 

1 1.64 19.2 0.31 

2 5.00 0.00 0.00 

3 2.32 76.7 1.78 

4 1.65 4.1 0.07 

5 2.33 0.0 0.00 

  Expected Cost 2.17 
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Table 21: Initial I-Beam Summary 

Expected Cost $2.07 

Initial Height 34.8mm 

Initial Modulus 182,200 N/mm2 

Probability of no change 19.2% 

Probability of any change 80.8% 

Probability of failure 0% 

Probability of changing height 76.7% 

Probability of changing modulus 4.1% 

 

Looking more closely at the design changes, it can be seen that there is an 76.7% 

chance that it is necessary to change the beam height. This change requires costly 

retooling of the extrusion die. The more economic change of the modulus happens only 

in 4.1% of the cases. To reduce the expected cost, it would be advisable to increase the 

beam height to reduce the likelihood of costly changes. An alternative design with a 

smaller expected cost can be found. To reduce the likelihood of changing the beam 

height, the beam height has been increased from 34.8mm to 40.9mm. This reduces the 

likelihood of a design change in the beam height, which unfortunately also increases the 

marginal part cost. However, for the increased wall thickness, it is possible to reduce the 

marginal part cost by reducing the modulus, increasing the design flexibility.  
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Table 22: Improved I-Beam Summary 

Expected Cost $1.74 

Initial Height 40.9mm 

Initial Modulus 149,000 N/mm2 

Probability of no change 70.2% 

Probability of any change 29.8% 

Probability of failure 0% 

Probability of changing height 2.1% 

Probability of changing modulus 27.7% 

 

Table 22 shows an overview of the flexible design analysis of the improved 

design. The likelihood of a defect has been reduced from 80.8% of the previous design in 

Table 21 to 29.8%. However, 93% of these defects can be resolved by means of a fast 

and cost efficient change of the modulus. Overall, there is a 70% chance of not changing 

the design at all, and in almost all other cases, it is possible to adjust for the prediction 

error by changing the modulus. There is only a 2.8% change that a costly change in the 

beam height is required, and virtually no chance of a design failure requiring a redesign. 

4.6.3 Conclusions 

The improved design was able to reduce the expected cost from $2.17 to $1.74, a 

cost reduction by $0.43, or about 20%. For the estimated 50,000 parts, this would have 

reduced the total production cost from $108,500 by $21,500 down to $87,00 by reducing 

expensive design changes and allowing flexibility with fast and efficient design changes. 
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This would have not only saved money, but also time due to delays in design changes. 

Figure 26 and Figure 27 compare the design options for the two different initial designs, 

the first using the design with the least marginal part cost and the second using the design 

with the least expected cost. The thickness of the connecting lines represents the 

likelihood of the expected outcome and design change occurring. These trees are 

mutually exclusive and completely exhaustive, all possible options are shown. The cost 

of the design options per part is also shown. For the first design in Figure 26, there is a 

very high likelihood of an expensive change of the beam height. Few designs are feasible 

without changes, and very few defects can be resolved by changing only the modulus. 

The second, improved design, exhibits a likelihood of the initial design being feasible. 

Moreover, a defect can most likely be resolved by means of changing the modulus. 

Initial
Design

Expected
 Outcome

M1

M2

No Defect

Deflection
too large

Design
Change
Options

S2

Sl

S3

S4

No Changes

Change Height

Change Modulus

Change Height
and Modulus

S1 No Change,
Failure

$1.64

$5.00

$2.32

$1.65

$2.33  

Figure 26: Design Options for Design with Optimal Marginal Cost 
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Improved
Initial
Design

Expected
Outcome

M1

M2

No Defect

Deflection
too large

Design
Change
Options

S2

Sl

S3

S4

No Changes

Change Height

Change Modulus

Change Height
and Modulus

S1 No Change,
Failure

$1.70

$5.00

$2.33

$1.72

$2.34  

Figure 27: Design Options for Design with Optimal Expected Cost 

4.7 Summary 

The flexible design methodology aims to reduce the overall cost by reducing the 

cost of design changes due to prediction errors. The goal is not to improve the robustness 

against uncertainty, but rather to reduce the negative impact of uncertainty on the cost of 

the design. The method evaluates the possible expected outcomes due to uncertainty and 

analyzes the possible design changes. This analysis enables the design team to modify the 

design in order to improve the flexibility of the design, resolving defects using economic 

design changes instead of costly and delaying design changes. This approach will be used 

in Chapter 6 to also determine the value of information for different design models and to 

investigate the relation between the cost and the use of prediction models. The following 

chapter presents a method to analyze the design change under uncertainty if the 

information regarding the design change uncertainty is available. 
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         CHAPTER 5  

DESIGN CHANGE ANALYSIS UNDER UNCERTAINTY 

5.1 Introduction 

The deterministic design change analysis in Chapter 4 evaluated the possible 

design changes and employed the strategy of selecting the least expensive design change 

able to resolve the defect. However, in reality it cannot always be guaranteed that a 

design change will actually resolve the defect, but there exists the possibility that a design 

change fails to resolve a given defect. This situation is not considered in Chapter 4, where 

the exact outcome of a design change is assumed to be known. As the design model has 

uncertainties, a prediction of the design responses will be imprecise. Creating a design 

will generate accurate information about one point in the design space, yet if the design 

has to be changed due to a violated specification, the outcome of this new design is 

uncertain. The uncertainty typically increases with the number and magnitude of changes 

to the known created design. 

This chapter presents a method to incorporate the uncertainty of the design change 

into the change strategy, resolving some shortcomings from Chapter 4. The following 

sections improve the design change analysis described in 4.3, and modify the 

determination of the expected cost as described in 4.4. The analysis of the expected 

outcomes in 4.2 remains unchanged.  
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5.2 Likelihood of Actual Design Responses Occurring 

In order to determine the overall cost of a design change, the likelihood of a 

certain set of actual design responses Y* occurring has to be determined. The conditional 

uncertainty distribution pdfU(yk,l,j) represents the probability distribution of the actual 

design responses Y* based on the predicted design responses Y. Figure 28 shows a 

conditional uncertainty distribution of the unchanged defective design as described in 

Chapter 4. Two possible design changes, design change A and design change B are 

shown with respect to the possible prediction uncertainties which could be resolved by 

means of these design changes. 
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Figure 28: Conditional Uncertainty Distribution 

5.3 Likelihood of Design Change Success 

In order to accurately determine the likelihood of success for a given design 

change, the probability distribution of this design change being satisfactory would have 

to be known. Unfortunately, this distribution is very difficult to obtain. Due to lack of 

better methods, human estimation may be used to determine these uncertainty 
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distributions. Within this chapter, the uncertainty distribution of the success of a design 

change is nominated as pdfS(y*
j), where y*

j represents the actual mean design response 

measured in the design 

Figure 29 plots the probability distribution pdfS(y*
k,l,j), which describes the 

likelihood of a design change resolving the defect. Please note that these distributions are 

truncated at the specification limit under uncertainty, as a non-violated specification is 

not defective.  
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Figure 29: Probability Density Function of Successful Design Change 

Since resolving a given defect would also resolve all smaller defects, the 

likelihood of resolving a given defect by means of a certain design change is represented 

by the cumulative distribution function as shown in Figure 30. The cumulative 

distribution function cdfS(y*
k,tl,j) can be calculated as shown in Equation 71, determining 

the probability of resolving a defect with prediction uncertainty. 
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Equation 71 
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Figure 30: Cumulative Density Function of Successful Design Change 
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If more than one design response is evaluated, the joint probability of resolving 

the defect PR
k,tl for a given design change and a given expected outcome can be evaluated 

as shown in Equation 72. If a design variable violates a specification limit, the probability 

of resolving the defect is determined. If a design variable does not violate the 

specification limits under uncertainty, no resolving of the defect is necessary. Please note 

that the likelihood of a design change resolving a defect depends on the value of actual 

design responses.  
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Equation 72 

5.4 Design Change Strategy and Cost 

Due to the uncertainty of a design change, it cannot be guaranteed that a design 

change will resolve a given defect. Rather, a likelihood of resolving a given defect can be 

determined based on the design change and the occurring uncertainty. If a design change 

is attempted, the change may be successful. The cost of a successful design change CS
k,tl 

consists of the cost of the changed part CM
k,tl and the cost of the change CC

k,tl, as described 

in Chapter 4 and shown in Equation 73. 
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Equation 73 
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However, if a design change is unsuccessful, a strategy is needed to determine the 

subsequent action. As previously described in the dissertation, the possible design 

changes for a given expected outcome are sorted according to the cost and likelihood of 

resolving the defect, with dominated designs reduced. If a design change is unsuccessful, 

the design change with the least total cost CT
k,tl+1 from the possible design changes with a 

larger likelihood of resolving the defect is selected. Therefore, the cost of an unsuccessful 

design change CU
k,tl consists of the design change cost for the attempted design change 

CC
k,tl and the total cost of the least expensive subsequent design change CT

k,tl+1 as shown in 

Equation 74.  
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Equation 74 

Therefore, the total cost of a design change CT
k,t1 consists of the cost of a 

successful design change CS
k,tl including the likelihood of resolving the defect PR

k,tl and 

the cost of an unsuccessful design change CS
k,tl including the likelihood of an 

unsuccessful design change 1- PR
k,tl for any given uncertainty as shown in Equation 75. 

Again, please note that the total cost of a design change depends on the value of actual 

design responses and the magnitude of the required change to move the design responses 

within the specification limits.  
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Equation 75 
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The design change with the largest likelihood of resolving the defect needs special 

consideration. If this design change would fail to resolve the defect, then the cost of an 

unsuccessful design change would be the cost of the change and the cost of design failure 

as shown in Equation 76.  
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Equation 76 

As the total cost of a design change CT
k,t1 depends on the total cost of all 

subsequent design changes CT
k,t1+1, the evaluation of the total cost has to be done starting 

from the design change with the largest likelihood of success PR
k,t2m, followed by all 

design changes with a smaller likelihood.  

5.5 Expected Cost of an Expected Outcome 

The total cost CT
k,t1 for each design change as calculated above represents the 

expected cost of a certain design change, given a certain set of actual design responses. 

For any given set of actual design responses, always the design change with the least total 

cost is CT
k,t1 selected. The total cost CT

k of an expected outcome Mk for a given set of 

design responses is shown in Equation 77. 
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 Therefore, the expected cost of the design change is the integral of the least total 

cost CT
k over the whole design space including the likelihood of specification violation 

for a given expected outcome as shown in Equation 78. The expected cost can then be 

used to improve design as described in Chapter 4. 
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Equation 78 

5.6 I-Beam Example 

The flexible design methodology will be demonstrated using the robust design 

derived in Chapter 2 as the initial design shown in Table 23. The flexible design 

evaluation for this initial design using the deterministic design change assumption has 

been evaluated in Chapter 4. 

Table 23: Initial Design Variables for Robust Design 

Design Variable Nom. Value 

Beam Height x1 34.8mm 

Modulus x2 182,200 N/mm2
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5.6.1 Likelihood of Actual Design Responses Occurring 

The probability density function of the actual design change occurring is shown 

below in Figure 31 based on the conditional uncertainty distribution determined in 

Chapter 4. Note that the distribution is truncated at the upper specification limit and 

scaled to ensure a total area of one. 
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Figure 31: I-Beam Conditional Uncertainty Distribution of Deflection for Robust Design 

5.6.2 Change Uncertainty Distribution 

The uncertainty in the design change is assumed to have a standard deviation of 

0.1 mm. The mean of the response distribution is the largest actual design response under 

uncertainty, which can be resolved using a discrete design change assumption. Figure 32 

shows the probability density functions of the different design changes. Please note, that 

the function for changing the height and the function for changing the height and the 

modulus overlap.  
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Figure 32: I-Beam Design Change Probability Density Function for Robust Design 

Table 24 represents the deterministic ability to resolve a defect using the different 

design canges. In addition, the possible design changes are already sorted according to 

the ability to compensate for prediction uncertainties. The upper specification limit under 

uncertainty is at a value of 2.899 mm. A design change in modulus would be able to 

adjust for actual deflections up to 2.969 mm. A design change in height would be able to 

adjust for actual deflections up to 5.338 mm, i.e. if the actual measured deflection of the 

design would be 5.3mm, it would be possible to adjust for the uncertainty by changing 

the height in order to satisfy the quality requirement. The option not to change the design 

but to accept a design failure is possible for any design response. Figure 33 shows the 

cumulative density function representing the likelihood of resolving a defect for any 

given actual response using different design changes.  
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Table 24: I-Beam Design Changes for Robust Design 

Change Index Deterministic Change (mm) 

Modulus  S3 2.969 

Height S2 5.338 

Height and Modulus S4 5.342 

No Change S1 ¶ 
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Figure 33: I-Beam Design Change Cumulative Density Function for Robust Design 

5.6.3 Cost of Design Change for a given Defect  

To develop a strategy regarding the selected design change, the expected cost of a 

design change has to be determined in order to allow a comparison with other design 

changes. The uncertainty distributions determine the likelihood of success for a given 

design change and a given magnitude of the defect. The cost of a successful design 

change is the cost of the part and the cost of the change. If the design change fails to 
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resolve the defect, the strategy is to select a design change with a higher probability of 

success.  

Therefore, the evaluation of the cost of a design change has to start with the most 

reliable design change. The most reliable design change for this example is the option not 

to change the design but to accept a design failure. This approach will always be the last 

option from the possible design changes at a cost of $5.00. The second most reliable 

design change is the option to change the height and the modulus. If the change is 

successful, the created cost consists of the part cost of $2.033 and the change cost of 

$0.301, giving a total cost of success of $2.334. However, if the change is unsuccessful, 

the only remaining option is a design failure. Therefore, the cost of an unsuccessful 

design change consists of the change cost of $0.301 of the attempt to resolve the defect 

and the failure cost of $5.00 of failing the design change, giving a total cost of an 

unsuccessful design change of $5.301. The expected cost of a change in the height and 

the modulus is shown in Figure 34, including the failure cost. It can be seen, that a design 

change using the height and the modulus is only justified economically for actual 

deflections of less than 5.5 mm. If the measured deflection exceeds 5.5 mm, then it is 

advisable not to change the design due to the small likelihood of success. 
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Figure 34: I-Beam Cost of Change in Height and Modulus for Robust Design 

The next less reliable design change is a change in the height. The cost of success 

is the cost of the part of $2.029 and the cost of the change of $0.300, giving a total cost of 

success of $2.329. The cost of an unsuccessful design change is the cost of the change of 

$0.300 and the least expensive alternative option, i.e. either a change in height and 

modulus or a design failure. Depending on the actual deflection, this alternative and the 

cost of the alternative may change. Figure 35 shows the expected cost of a change in the 

beam height, as well as the expected cost of a change in the height and the modulus.  
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Figure 35: I-Beam Cost of Change in Height for Robust Design 

The least reliable design change option is a change in the modulus. The cost of a 

successful change consists of the part cost of $1.649 and the change cost of $0.001, 

giving a total cost of $1.650. If the design change fails to resolve the defect, the 

alternative will be the least expensive other design options, a change in the height, a 

change in the height and the modulus, and a design failure. Figure 36 shows the expected 

cost of a change in the modulus, as well as the expected cost of other design changes. 
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Figure 36: I-Beam Cost of Change in Modulus for Robust Design 
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5.6.4 Expected Cost of Design Change 

The strategy for selecting the design change is to always select the change with 

the least expected cost for a given design response. Figure 37 shows the least expected 

cost for all design responses and the recommended strategy of design change. Please 

note, that it should be attempted to resolve a defect by means of a change in the modulus 

for deflections up to 3.27mm. At this point, there is a very small change of resolving the 

defect as shown in Figure 33. However, because the design change is so inexpensive, it is 

worth the attempt. If the change fails, the added cost is minimal, and a subsequent change 

of the height is attempted.  
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Figure 37: I-Beam Cost of Design Change for Robust Design 

The least cost can now be combined with the likelihood of the defect occurring 

and integrated over the range of possible defects to determine the expected cost of 

resolving the expected outcome. In this example, the expected cost of resolving the defect 

was determined to be $2.26. This can now be combined with the cost of a non-defective 
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design and the likelihood of a defect occurring into the expected cost of the design as 

shown in Table 25. The expected cost of the design was determined to be $2.145. 

Table 25: Design Cost of Robust Design 

Design Variable Expected Cost of 
Expected Outcome

Probability of 
Expected Outcome 

Expected Cost
(Fraction) 

No Defect $1.645 19.2% $0.315 

Excessive Deflection $2.26 80.8% $1.826 

  Expected Cost $2.145 

 

5.6.5 Flexible Design 

The expected cost for the I-beam using the improved change methodology was 

minimized to determine the flexible design. The design variable values of this flexible 

design are shown in Table 26. The least cost for any defect is shown in Figure 38. It can 

be seen that a change in the modulus is attempted for a larger range of possible defects as 

compared to Figure 37. A change in modulus within the given range has a much larger 

likelihood to resolve the defect. In addition, for a certain range of defects it is most 

beneficial to utilize a change in height and the modulus as the first attempt to resolve the 

defect.  
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Table 26: Flexible Design Initial Design Variables 

Design Variable Nom. Value 

Beam Height x1 39.2mm 

Modulus x2 162,000 N/mm2
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Figure 38: I-Beam Flexible Design Cost of Design Change  

Table 27 shows the overall expected cost of the design. Although the initial part 

cost is increased compared to the robust design, the expected cost is significantly reduced 

by $0.43 from $2.15 to $1.72, representing a savings of over $215,000 for 500,000 parts. 

This is mainly due to the reduced likelihood and cost of a design change, where the 

flexibility of a change in the modulus was utilized and an expensive change in the beam 

height is frequently avoided. 
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Table 27: Design Cost of Flexible Design 

Design Variable Expected Cost of 
Expected Outcome

Probability of 
Expected Outcome 

Expected Cost
(Fraction) 

No Defect $1.716 67.0 % $1.316 

Excessive Deflection $1.750 33.0% $0.408 

  Expected Cost $1.724 

 

5.7 Summary 

The handling of uncertainty offers an improved method to utilize the flexible 

design methodology, where the likelihood of a successful design change and the cost of a 

design change is included in the strategy of selecting a given design change. An 

inexpensive design change, e.g. the modulus, is attempted even if there is a low 

possibility of the design change resolving the defect. If the change would be successful, it 

would have been possible to avoid an expensive design change. If the change is 

unsuccessful and fails to resolve the defect, no significant cost is added. This method of 

handling uncertainty in a design change is improved compared to the deterministic 

handling of design changes as described in Chapter 4. However, the problem in this 

approach lies in obtaining the necessary estimates regarding the uncertainty of the design 

change. As this information is frequently unavailable or can be obtained only under great 

efforts, a deterministic design change evaluation may be preferable. Therefore, Chapters 

6 and 7 containing the value of information and a complex industry example will utilize 

the deterministic design change analysis. 

 



         CHAPTER 6  

VALUE OF INFORMATION 

6.1 Introduction 

Information about the relation between the design variables and the design 

responses in engineering design is a valuable asset in the design process. Within this 

dissertation, design information is seen as the ability to predict the behavior of an 

engineering design. This ability is necessary in order to select a feasible design.  

If the functional relations between the design variables and the design responses 

would be known without any uncertainty, it would be possible to create a design having 

exactly the desired responses. Unfortunately, this information is usually not free but has 

to be discovered and validated. This process of investigating the design requires human, 

financial, and material resources, and therefore creates cost.  

Statement 1: Acquiring information requires resources. 

In addition, information regarding an engineering design is not always perfect. 

While not necessarily wrong, the information might be inaccurate and uncertain, causing 

the behavior of the physical embodiment of a design to differ from the predicted design 

behavior. This difference can cause additional defects and reduce the value of the design. 

The sources of this incorrect and therefore uncertain information are described in Chapter 

3. 

Statement 2: Information is uncertain 
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A schematic relation between the cost of the information and the defect change 

cost is shown as a function of prediction error in Figure 39. A reduced prediction error 

reduces the cost due to design changes and overly conservative safety factors. However, 

in order to reduce the prediction error, effort is required to gain information in order to 

improve the accuracy of the prediction. This cost of information generally increases as 

the prediction error decreases.  
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Figure 39: Schematic Cost as a Function of the Prediction Error 

The method described in this chapter aims to determine a trade-off between the 

cost of information and the value of information. An outline is shown in Figure 40. The 

considered prediction models are determined and the cost of information is estimated. An 

economic prediction model is created to simulate the more accurate prediction models 

using the flexible design methodology. The benefit of the prediction models is compared 

to the cost of the prediction models, and the model with the best trade-off is created. 

Using this model, the design with the least expected cost is determined using the flexible 

design methodology, and this design is then applied to production. 
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Figure 40: Value of Information Method Outline 

The value of information has been analyzed for human experience, where a more 

experienced engineer will usually perform better than a less experienced engineer. 

(Ahmed et al. 1999) discusses the relation between data and information by studying the 

different tools and methods used by designers of different levels of experience. (Lowe et 

al. 1999) also investigates the organization and use of information by design teams with 

different levels of experience. (Wood et al. 1998) describes an approach to formalize 

human experience of previous design projects in order to use this experience for the 

improvement of current design projects. (Yoshimura and Kondo 1997) emphasizes the 
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importance of groups to pool human experience in engineering design. (Jahangir and 

Frey 1999) describes methods to measure information content in order to provide a basis 

to determine the independence of information for engineering design. (Kelly 1956) 

describes information rates on a very theoretical basis. 

6.2 Cost of Information 

In order to gain information about the design, resources have to be invested. 

Human estimation can be used to predict the behavior of a design. However, the 

prediction accuracy varies wildly depending on the experience of the design team. 

Therefore, this method is rarely used by itself but rather to support and simplify other 

more scientific methods. The cost of this method depends on the cost of the human 

resources and the time required to estimate the design performance. 

Another frequently used method to estimate the behavior of the design is the 

creation of analytical models. These models are usually very accurate if the analytical 

model describes the design completely. Prediction accuracy is lost as the number and 

effect of bad assumptions increases. The cost of this information generating method also 

depends largely on the cost of the human resources and the time required to create the 

analytical model.  

Related to the analytical model is the finite element method. The accuracy of this 

method also depends on the number and effect of assumptions. Although it is possible to 

use the finite element method to estimate the functional relation across the whole design 

space, this would require the full analysis of every design of interest during the design 

development process. To reduce the computational expense, the performance data can be 
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interpolated or extrapolated from a response surface model. The cost of this method 

depends not only on the cost of human resources, but also on the necessary computational 

equipment and software. 

Empirical data is also commonly used in engineering design. The problem of 

empirical data is the estimation of the design behavior between and outside of the 

conducted designs. Interpolations and extrapolations are used to estimate the design 

behavior for the complete design space. This method is also used to measure the actual 

design responses by testing actual instances of the design. The cost of this method is 

rather large, depending not only on the human resources but also on the effort in material 

and processing to create the empirical data. This also increases with the number of 

measured sample points, which frequently reduces the error of the prediction model.  

The cost of generating the information is nominated as CI. Note that 1) the 

available methods to acquire information depend on the design system and the available 

resources, and 2) the quality may vary depending on numerous influences like the 

experience of the design team or the quality of the finite element software. Therefore, no 

general evaluation of the cost of the information CI is presented in this dissertation. Cost 

accounting methods have to be used with respect to the different information generating 

methods. For an overview about cost accounting, please refer to (Wöhe 1993). The 

following section describes the required information and assumptions to evaluate the 

value of information. 
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6.3 Requirements 

In order to compare the expected cost for different model accuracies, it is possible 

to use multiple prediction models with different prediction accuracies. However, to do 

this, both models have to be created in order to compare them with each other. Yet, if 

there exist different models with different degrees of accuracy, it is common sense to use 

the most accurate model. A comparison would merely prove that the less accurate model 

has a lower value. 

However, it is desirable to know the value of a prediction model before investing 

the time and resources of creating the prediction model. A prediction of the effect of 

increased model accuracy on the expected cost has to be made. To perform this 

prediction, an initial design model has to exist. This initial design model has to represent 

the basic relations between the design variables and the design responses, and to include 

all design variables and design responses utilized in the more complex models. This 

model is used to estimate the predictions of more accurate models to evaluate the value of 

information.  

Theoretically, this model can be used to compare prediction models with less and 

more accuracy than the initial design model. However, if the initial model is created, it 

will be of little use to simulate a less accurate model. Therefore, the simulated models 

should have higher prediction accuracy than the initial model used. In addition, once the 

effort for creating the initial model is spent, it is impossible to reallocate the consumed 

resources. Therefore, this initial model should be inexpensive to keep the initial costs 
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low. In summary, a low cost model should be used to simulate other more expensive and 

more accurate models. 

The initial model is used to compare the value of different more accurate models. 

The more accurate models do not have to be created. However, the prediction error 

distribution for the different responses would have to be estimated to evaluate the value 

of information. Unfortunately, as these models are not yet created, the prediction error 

distribution cannot be measured. Previous experience with similar models can be used to 

estimate the uncertainty of a prediction model. Human experience may also be used to 

estimate the prediction accuracy based on prior experience with similar models. (Hunkar 

1982; Hunkar 1987; Hunkar 1991; Hunkar 1998a; Hunkar 1998b) uses class factors to 

group injection molding machines according to their process repeatability, i.e. their 

production accuracy. (Glaeser et al. 1995) analyzes mathematical techniques for 

uncertainty and sensitivity analysis, concluding that if an actual model is available it 

should be used and not simplified by fitting a prediction equation on the model due to the 

increased uncertainty. 

The simulation of the effects of uncertainty of a more accurate model using a less 

accurate model predicts the different expected outcomes and design changes due to 

uncertainty. Note that this is only used to compare different levels of uncertainty. It does 

not provide more accurate design predictions! The resulting optimal designs for a 

simulated uncertainty can only be used to evaluate the effect of uncertainty towards the 

design. It must not be implemented as a “better design”. In order to receive the benefits of 
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the reduced uncertainty, the improved model has to be created and the flexible design 

method has to be performed using the improved model. 

6.4 Value of Information 

To determine the value of information of different design predictions, the design 

is optimized for the expected cost using different prediction uncertainties. First, the cost 

of the information CI
u for different uncertainty assumptions has to be determined and the 

resulting uncertainty distributions pdfU
u(Y) estimated. Table 28 shows an example of 

different prediction models, including cost CI
u and uncertainty distributions pdfU

uY). 

Table 28: Prediction Models 

r Cost Uncertainty Comments 

1 CI
1=0 pdfU

1(Y) e.g. Analytical Model 

2 CI
2 pdfU

2(Y) e.g. Empirical Data 

3 CI
3 pdfU

3(Y) e.g. FEM Analysis 

 

As mentioned above, an initial model is required to simulate the behavior of the 

design under uncertainty. Therefore, the effort for creating this model has to be spent 

before determining the value of information. Subsequently, no new cost is added for a 

later creation of the model, and the cost of information CI
1 is set to zero for the purpose 

of the uncertainty evaluation. 
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6.4.1 Determine Ideal Designs 

The expected cost CE
u is minimized using the uncertainty pdfU

uY) of the design 

model u for the initial prediction model. Subsequently, designs are determined by 

minimizing the expected cost using the different uncertainty assumptions. For each 

uncertainty assumption j one design Xu is created, representing a desired expected cost 

within the design space with respect to the described prediction uncertainty.  

( )
( )Ypdfusing

uCMin
U
u

E
u ∀  

Equation 79 

6.4.2 Compare Designs 

It is now possible to compare one or more different prediction models using the 

flexible design methodology to evaluate the expected cost as shown in Table 29. Again, 

please note that only future cost is considered. As the prediction model used to simulate 

the prediction accuracy is already created, no further cost is added, and the cost of 

information for this model is zero. 

Table 29: Uncertainty Comparison 

Uncertainty Expected Cost Cost of Information 

pdfU
1(Y) CE

1 CI
1=0 

pdfU
2(Y) CE

2 CI
2 

pdfU
3(Y) CE

3 CI
3 
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The amortized cost of retrieving the information CI can then simply be added to 

the expected cost CE in order to represent the expenses of the design CEI including 

possible design changes and the cost of retrieving the information as shown in Equation 

80. Note that V represents the production volume, as the cost is estimated per part. This 

generates multiple designs with different costs including the expected cost and the cost of 

information. 

V
CCC

I
uE

u
EI
u +=  

Equation 80 

This information can now assist in selecting and developing a desired prediction 

model, giving the best trade-off between the benefits of the improved prediction accuracy 

and the cost of retrieving the information. The prediction model with the least cost CEI 

represents the best trade-off assuming a risk indifferent approach. However, if the design 

team is willing to take the risks of using a more economic but less accurate model, it 

might choose a model where the cost of information is less than the optimal trade-off, 

with an subsequently larger expected cost. If a risk adverse design approach is utilized, a 

more accurate design model might be selected even if the benefits of the accuracy do not 

justify the added cost of the information. In this case, there might be other benefits not 

considered in the flexible design methodology, as for example a reduction in the time 

needed for possible design changes. 
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6.5 I-Beam Example 

The method to determine the value of information will be demonstrated using the 

previous I-beam example. 

6.5.1 Prediction Models 

The value of information will be compared for the I-beam using two different 

prediction models, both with a standard normal distributed prediction uncertainty. The 

first prediction model is the set of response surface equations developed in Chapter 2. 

The deflection prediction using the response surface model has a mean prediction error of 

0.4mm and a standard deviation of the prediction error of 0.452mm under uncertainty, 

mainly due to the errors in fitting a quadratic equation to the sampled data points. The 

second prediction model will be the analytical model, also described in Chapter 2. The 

error of the deflection for the analytical model due to uncertainty has a mean error of zero 

and a standard deviation of 0.05mm stemming from parametric variation. An overview of 

the uncertainty distributions is shown in Table 30.  

Table 30: I-Beam Prediction Error Distributions for the Deflection 

Prediction Model Mean (mm) Standard Deviation (mm)  

Analytical Model 0.00 0.05 

Response Surface Model 0.40 0.45 
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6.5.2 Cost of Information 

To generate either of these two prediction models, effort has to be invested in 

researching and organizing the information. This effort will differ for the different 

prediction models, causing the cost of the information to differ. For the example, of the I 

beam, the generation of the analytical model and the prediction model can both be done 

quickly with a low cost and resource requirement.  

However, to demonstrate the methodology, the two prediction models will 

possess different costs, where the more accurate model is more expensive than the less 

accurate model. Although this is not necessarily true for the I-beam example, it is valid 

for numerous industry examples, where for example the number of experimental sample 

points in a design of experiments increases accuracy and cost, or where the cost of human 

resources is increasing with the number and experience of the project engineers. 

Therefore, for this example, the cost of creating the prediction model is assumed 

to be $1,000 for the response surface model and $4,000 for the analytical model. An 

overview of the cost of information is shown in Table 31, where the overall cost of 

information and the cost of information per part for 50,000 parts are given. 

Table 31: I-Beam Cost of Information 

Prediction Model Cost of Information Cost of Information per Part CI

Analytical Model $4,000 $0.08 

Response Surface Model $1,000 $0.02 
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In order to compare different prediction models, the less expensive response 

surface model is used to provide a basis to evaluate the value of information. Therefore, 

the efforts of $1,000 for creating the response surface model have to be invested, and 

subsequently there will be no additional cost for the creation of the model. The objective 

is to determine if it is more economic to utilize the existing response surface model, or if 

it is more economic to create the more accurate analytical model at the additional cost of 

$4,000.  

6.5.3 Flexible Design Evaluation 

To compare the two prediction models, a flexible design evaluation has to be 

performed, creating an expected cost for each prediction uncertainty. The response 

surface model will be used to simulate the prediction accuracy of the analytical model. 

The following sections describe the designs with the least expected cost for the different 

prediction uncertainty distributions. 

6.5.3.1 Response Surface Model 

The design with the least expected cost for the response surface model was 

evaluated in Chapter 4. The resulting design from the flexible design methodology is 

shown in Table 32.  
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Table 32: Initial Design with Least Expected Cost for Response Surface Model  

Expected Cost $1.75 

Beam Height 40.9mm 

Modulus 149,000 N/mm2 

Probability of No Change 70.2% 

Probability of Any Change 29.8% 

Probability of Failure 0.00% 

Probability of Changing Height 2.1% 

Probability of Changing Modulus 27.7% 

 

6.5.3.2 Analytical Model 

The effects of the prediction accuracy of the analytical model were simulated 

using the response surface model, but with lower mean and standard deviation of the 

prediction uncertainty of the analytical model. An overview of the results is shown below 

in Table 33. Using the reduced uncertainty distribution of the analytical model, it was 

possible to reduce the expected cost from $1.75 to $1.65. This reduction in cost comes 

primarily from a reduction in the beam height. This reduction was possible due to a 

reduced change likelihood stemming from the smaller prediction error. Therefore, the 

design requires less robustness against uncertainty, and the beam height can be reduced 

without a significant increase in the probability of a design changes. 
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Table 33: Initial Design with Least Expected Cost for Analytical Model Uncertainty 

Expected Cost $1.65 

Beam Height 35.1mm 

Modulus 181,000N/mm2 

Probability of No Change 86.1% 

Probability of Any Change 13.9% 

Probability of Failure 0.00% 

Probability of Changing Height 0.21% 

Probability of Changing Modulus 13.9% 

 

It is important to point out that this analysis is only used to compare the effect of 

model accuracy, and it is not recommended to build this design. If this analytical 

prediction model is desired to choose a design, the analytical model has to be developed 

and the flexible design methodology has to be performed using the actual analytical 

model. 

6.5.4 Value of Information 

Using the flexible design methodology to simulate the benefits of the improved 

prediction accuracy, it was determined that the analytical model would reduce the 

expected cost by $0.10 per part. Therefore, it would be beneficial to invest up to $0.10 

per part into the development of the analytical model to harvest the benefits of the 

improved prediction accuracy. If the creation of the analytical model would cost more 

than $0.10 per part, an investment would be not advisable for a risk indifferent design 
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approach. However, if the design team is willing to have additional expenses to reduce 

the risk of a design change, a cost of the model in excess of $0.10 may still be desirable. 

The cost of failure did not affect the design decision, as this design has a very low 

probability of failure. The probability of failure, i.e. the probability of a major redesign 

may also affect the decision regarding the use of a prediction model. 

However, in this case, the analytical model was determined to cost $0.08 per part, 

and therefore it is recommended to invest the resources into the development of the 

analytical model, assuming a risk indifferent approach.  

6.5.5 Flexible Design Evaluation for Analytical Model 

The evaluation of the value of information justified the development of the 

analytical model on an economic basis. Therefore, the flexible design methodology uses 

the analytical model in order to determine the least expected cost is shown below in 

Table 34. It can be seen that the usage of the analytical model would reduce the expected 

cost even further, not only from $1.74 to $1.65 as predicted but to $1.61, justifying the 

expense of developing of the analytical model. There is a low probability of any design 

change, and if a defect occurs, it can be resolved by changing the modulus alone. It 

should be noted, moreover, that the flexible design method does not provide a guarantee 

of no change, but derives an optimal point at lower cost that may require a simple design 

change. 
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Table 34: Flexible Design using Analytical Prediction Model  

Expected Cost $1.61 

Beam Height 33.8mm 

Modulus 172,000N/mm2 

Probability of No Change 90% 

Probability of Any Change 10.0% 

Probability of Failure 0.0% 

Probability of Changing Height 0.0% 

Probability of Changing Modulus 10.0% 

 

6.6 Summary 

The flexible design methodology can be utilized to determine the value of an 

accurate prediction model before creating the model by simulating the prediction 

accuracy using a less accurate model. The least expected cost can be determined for 

different model accuracies, and the benefit of improved accuracy can be measured. The 

comparison of the benefit with the cost of the information aids the design team in the 

selection of the utilized prediction model, and a strategy for the design development 

process can be chosen. 

 

 



         CHAPTER 7  

APPLICATION EXAMPLE 

7.1 Introduction: Thin Wall Monitor Housing 

The flexible design methodology will now be demonstrated for an industry 

application. An injection-molding monitor housing was selected due to the complexity of 

the underlying relations and the significant effect of the processing variables towards the 

design responses. Since the information regarding the design change accuracy is not 

available, the deterministic design change analysis as described in Chapter 4 was utilized. 

For detailed information regarding the prediction models please refer to Appendix D. 

7.1.1 Design Variables 

The prediction models use a significant number of continuous and discrete design 

variables to predict the properties of the monitor housing. These variables are listed 

below in Table 35, including a brief description of the design variables.  
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Table 35: Design Variables 

Design Variable Type Unit Comment 

Melt Temperature Continuous ºC Temperature of plastic material 

Mold Temperature Continuous ºC Temperature of mold 

Eject Temperature Continuous ºC Required temperature for ejection 

Injection Time Continuous s Duration of injection cycle 

Thickness Continuous mm Average wall thickness of housing 

Flow Length Continuous cm Distance from gate to furthest corner

Material Type Discrete # Resin grade 

Number of Tools Discrete # Number of production tools used  

Availability Continuous hr/week Time for production per week 

Projected Area Continuous cm2 Projected area of the housing 

Production Volume Discrete # Number of produced parts 

 

Four different material types are commonly used for the monitor housing. Three 

materials consist of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) resin 

blend. An additional material consists of a polycarbonate (PC) and polystyrene (PS) resin 

blend. Three of these materials are commercially available from two major resin 

suppliers and an additional fourth material is a non-commercial experimental grade from 

a major resin supplier.  

If all available design variables were included in the flexible design analysis, a 

total of up to 331,776 design evaluations would be required. If each evaluation would 

take only one second, the complete flexible design analysis would require almost 4 days. 
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Therefore, only the most significant design variables are used within the flexible design 

analysis as determined by a main effects analysis. Other variables remain at their nominal 

value. Table 36 shows the investigated design variables including the constraint limits 

and the standard deviation of the noise. Table 37 shows the other design variables with a 

constant value, including the standard deviation of the noise.  

Table 36: Investigated Design Variables 

Design Variable Type Unit Noise Deviation LCL UCL

Mold Temperature Continuous ºC 5 50 70 

Thickness Continuous mm 0.1 1.5 3.5 

Number of Tools Discrete # n/a 3 4 

Material Type Discrete # n/a 1 4 

 

Table 37: Constant Design Variables 

Design Variable Type Unit Noise Deviation Value 

Melt Temperature Continuous ºC 3 270 

Eject Temperature Continuous ºC 3 90 

Injection Time Continuous s 0.1 1 

Flow Length Continuous cm 0 29 

Availability Continuous hr/week 0 100 

Projected Area Continuous cm2 0 1,500 

Production Volume Discrete # 0 500,000
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The selection of the investigated design variables was based on the significance of 

these design variables toward the expected cost using the flexible design methodology. 

However, the impact on the design response is not the only criteria for selecting the 

design variables. The flexible design methodology aims to achieve a compromise 

between the cost of the part and the cost of the design changes. This compromise is 

necessary if the change of a design variable affects the cost of the part and the cost of the 

design changes inversely, i.e. changing the variable in one direction increases one cost 

and reduces the other. If a change in a design variable affects both costs in the same way, 

i.e. an increase of a design variable both reduces the cost of the part and the cost of 

changes, no trade-off is necessary and the variable is set to the nominal value giving the 

least part cost and the least change cost. Subsequently, a variable requiring no trade-off 

between the change cost and the part cost does not have to be analyzed by the flexible 

design methodology. 

For example, the melt temperature has a significant effect on the performance and 

the cost of the product. However, there is little or no trade-off, since an increase in melt 

temperature reduces both the part cost due to a reduction in the required machine cost and 

the change cost due to a reduction of the melt pressure. Therefore, the melt temperature is 

set at the upper constraint limit and not investigated by the flexible design analysis. 

7.1.2 Design Responses 

Several design responses are evaluated to determine the feasibility of the design 

and to create the objective function for the design automation. Detailed information can 

be found in Appendix D. However, only four design responses are specified within the 
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monitor-housing example presented within this chapter. These design responses are listed 

below in Table 38 including the related specification limits. The prediction error 

distribution of these design responses is assumed to be standard normal distributed with a 

mean of zero and a standard deviation as shown in Table 38. In addition to these 

specified design responses, the marginal part cost is also evaluated in order to provide an 

objective function. An error transformation was used to predict the response noise 

distribution based on the noise distribution of the design variables. 

Table 38: Design Responses 

Design Response Unit Uncertainty Deviation LSL USL 

Melt Pressure MPa 50 - 150 

Shrinkage % 0.03 0.01 0.3 

Clamp Tonnage t 100 - 700 

Production Period Weeks 2 - 18 

Marginal Part Cost $ n/a - - 

 

7.2 Transfer Functions 

The deterministic relation between the design variables and the design responses 

was established using a variety of different models and simulations. To reduce the 

computation time, some of the more computationally expensive simulations were 

approximated with a response surface prediction equation using a quadratic design of 

experiments. In order to estimate the response distribution based on the distribution of the 
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design variables, a moment matching method has been applied as described in the 

appendix. Detailed information can be found in Appendix D. 

7.3 Robust Design against Noise 

The monitor housing design system has been optimized to reduce the marginal 

part cost with respect to the quality requirement as described in Chapter 2. Within this 

example, the mean response is required to be at least three standard deviations away from 

the specification limits. For this a value of three, the design with the least marginal part 

cost is shown in Table 39. The related design responses are shown in Table 40, including 

the standard deviation of the responses due to noise and the distance of the mean 

response to the specification limit (measured in number of standard deviations).  

Table 39: Design Variables for Least Marginal Part Cost 

Design Variable Value

Mold Temperature 69.34 

Thickness 1.948 

Number of Tools 3 

Material Type 4 
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Table 40: Design Responses for Least Marginal Part Cost 

Design Response Value Noise Deviation Distance to {LSLU, USLU}

Melt Pressure 49.9 13.94 {n/a, 7.17} 

Shrinkage 0.140 0.002 {46.1, 56.4} 

Clamp Tonnage 379.8 106.14 {n/a, 3.01} 

Production Period 12.88 0.851 {n/a, 6.02} 

Marginal Part Cost 5.949 n/a n/a 

 

7.4 Flexible Design Methodology 

For the above design system, the flexible design methodology is applied. Two 

designs are compared with each other. The first design represents the robust design from 

section 7.3. This design is compared with an improved design, having the optimal 

expected cost. 

For both cases, a design change cost matrix is used to evaluate the change cost of 

a design change. The change costs for the design variables was developed from 

interviews. As shown in Table 41, the design variables can be grouped into two 

categories. The number of tools and the thickness are very expensive changes. With 

respect to the overall cost, it is preferable to change inexpensive design variables if 

possible, e.g. the mold temperature and the material type require only a minimal change 

cost. Therefore, it is preferable to use these variables for design changes in order to 

improve the flexibility of the design. Within the following flexible design analysis it will 

be shown that a design with a small expected part cost is very likely to use these 
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inexpensive design variables to adjust for possible prediction errors, and the change of 

expensive design variables is avoided whenever possible. 

Table 41: Design Variables Change Cost 

Design Variable Change Cost Change Cost per Part 

Mold Temperature $100 $0.00020 

Thickness $80,340 $0.16 

Number of Tools $200,220 $0.40 

Material Type $190 $0.000380 

 

7.4.1 Optimal Robust Design  

The design with the least marginal part cost may violate the quality requirements 

due to the prediction uncertainty. Table 42 shows the likelihood of the initial design 

violating the quality requirements for each design response, subsequently requiring a 

design change. It can be seen that the design is very likely to violate the clamp force 

requirements, causing an excessive number of defects. There is also a smaller probability 

of violating the production time and melt pressure requirements. 
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Table 42: Probability of Specification Violation under Uncertainty  

Design Response Probability

Melt Pressure 12.2% 

Shrinkage 0.0002% 

Clamp Force 49.3% 

Production Time 9.9% 

 

The expected cost of the design with the least marginal part cost is $7.34 as 

shown in Table 43. This is mainly due to the large number of design changes, where the 

unchanged design has only a probability of 40% of being feasible. Out of the 59% 

likelihood of design changes, the vast majority of defects require both a change of the 

wall thickness (42%) and the number of tools (48%). Unfortunately, the increase of the 

number of tools is the most expensive design change with a cost of $200,220, or $0.40 

per part. The second most expensive design change is the change of the wall thickness, 

requiring costly retooling of $80,340, or $0.16 per part.  

Moreover, there is only a 2% likelihood of resolving the defects with a fast and 

economic change of the material or the mold temperature. In summary, this design has a 

large likelihood of a design change, requiring the change of the two most expensive 

design variables investigated. In addition, there is a 0.8% chance of encountering a defect 

that cannot be adjusted for within the given analysis, creating an additional failure cost.  
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Table 43: Flexible Design Analysis Summary for Least Marginal Part Cost 

Expected Cost $7.34 

Probability of No Change 40.1% 

Probability of Any Change 59.1% 

Probability of Failure 0.8% 

Probability of Change in Mold Temperature 4.6% 

Probability of Change in Thickness 41.7% 

Probability of Change in Number of Tools 47.7% 

Probability of Change in Material Type 11.4% 

 

7.4.2 Optimal Flexible Design  

By using the flexible design methodology, the behavior of the design with the 

least marginal part cost was improved to reduce the probability of a design change and to 

facilitate the flexibility of design change. This was achieved by increasing the wall 

thickness to improve the ease of flow and therefore reduce the required clamp tonnage. 

However, this also increased the material cost and the time required for cooling the part. 

To reduce the production time, the mold temperature has been decreased. The design 

variable values for the design with the least expected cost are shown in Table 44, which 

can be compared to Table 39. 
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Table 44: Design Variables for Least Expected Cost 

RSM Flexible Design Value

Mold Temperature 52 

Thickness 2.12 

Number of Tools 3 

Material Type 4 

 

This design reduces the probability of violating the clamp force requirement from 

50% to 9% as shown in Table 45. The likelihood of violating the requirements on the 

melt pressure and the production time has also been reduced 7% and 1%, respectively. 

This design significantly increased the marginal part cost by $0.31 from $5.94 to $6.25. 

However, the expected cost including design changes has been reduced by $0.94 from 

$7.34 to $6.40 per part. This would reduce the overall cost of all parts by $470,000 from 

$3,670,000 to $3,200,000 due to the improved trade-off between the marginal cost of the 

part and the likelihood and cost of design changes. 

Table 45: Improved Probability of Specification Violation under Uncertainty  

Design Response Probability

Melt Pressure 6.55% 

Shrinkage 0.014% 

Clamp Force 9.15% 

Production Time 1.17% 

Marginal Cost $6.25 
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Table 46 shows a comparison between the design with the least marginal part cost 

in the previous section and the design with the least expected cost. The overall 

probability of the initial design requiring no design change has been more than doubled 

from 40% to over 83%. Subsequently, the probability of any change has been reduced to 

one fourth of the previous value. Out of the 15% likelihood of design changes, 8% can be 

resolved by changing only the melt temperature, a very inexpensive and fast design 

change. The likelihood of changing the two most expensive design variables, the number 

of tools and the wall thickness, has been extremely reduced. Overall, the probability of a 

design change has been greatly reduced, and out of these design changes, a large fraction 

can be easily resolved using the flexibility of the design.  

Interestingly, the probability of failure has been slightly increased. This 

probability stems from an inability to simultaneously satisfy mutually exclusive 

specifications given the current statue of knowledge. There are different methods to 

reduce the probability of failure or to improve a design if a failure occurs. One option is 

to expand the design space, for example by considering a wall thickness in excess of 

3.5mm or investigate additional high quality materials. Another option is to include 

design variables not previously considered in the flexible design methodology, as for 

example the flow length or the melt temperature. It is also possible to redesign the part, 

for example by adding flow channels to reduce the injection pressure or by breaking up 

the monitor housing into two smaller, less complex parts. 
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Table 46: Flexible Design Analysis Comparison 

Design Element Robust 
Design

Flexible 
Design 

Change 

Expected Cost $7.344 $6.396 - $0.948

Probability of No Change 40.1% 83.8% + 43.7%

Probability of Any Change 59.1% 14.8% - 44.3% 

Probability of Failure 0.8% 1.3% + 0.5% 

Probability of Change in Mold Temperature 4.6% 14.0% + 9.4% 

Probability of Change in Thickness 41.7% 5.9% - 35.8% 

Probability of Change in Number of Tools 47.7% 1.8% - 45.9% 

Probability of Change in Material Type 11.4% 2.0% - 9.4% 

 

7.5 Value of Information 

The value of information is determined by comparing two different prediction 

models with different prediction uncertainties. The first model is the response surface 

model as evaluated above. This model will be utilized to simulate the prediction accuracy 

of the second model. The second model utilizes simulations and finite element methods, 

having a significantly reduced uncertainty. The response surface model (RSM) and the 

finite element model (FEM) are compared in Table 47. The cost of creating the finite 

element model for the design space is assumed to be $100,000 or $0.20 per part. The cost 

of creating the response surface model is assumed to be $20,000 or $0.04 per part. 

However, since the response surface model is already created, there is no additional cost, 

therefore the cost of information for the response surface model is zero. 
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Table 47: Design Response Uncertainty Comparison 

Design Response Unit RSM 
Deviation 1

FEM 
Deviation 2 

Melt Pressure MPa 50 40 

Shrinkage % 0.03 0.01 

Clamp Tonnage t 100 50 

Production Period Weeks 2 0.6 

Cost of Information per Part $ 0.00 0.20 

 

The design with the optimal expected cost for the response surface method has 

been evaluated in 7.4.2. The design with the least expected cost of the finite element 

model is simulated using the response surface model and the uncertainty distributions of 

the finite element model, resulting in the design summarized in Table 48. 

Table 48: Design Variables for FEM Flexible Design 

Design Variable Value

Mold Temperature 53 

Thickness 2.03 

Number of Tools 3 

Material Type 4 

 

The two designs, referred to as RSM design and FEM design are compared in 

Table 49. The RSM design has an expected cost of $6.39, and the FEM design has an 

expected cost of $6.14. The difference in the expected cost represents the value of 
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information of the FEM design of $0.25, exceeding the cost of information of $0.20. 

Combining the expected cost and the cost of the information, the FEM design with $6.34 

is still $0.05 less expensive than the RSM design with $6.39. This would represent a 

savings of $25,000 for all parts due to the increased prediction accuracy despite the added 

cost of the finite element models.  

Looking more closely at the results, the FEM design is with 38% actually more 

likely to be changed than the RSM design. However, out of the design changes for the 

FEM model, a large majority of 34% can be resolved virtually for free by flexibly 

changing the mold temperature. Only a small fraction of the changes require the 

adjustment of the wall thickness, and no change requires the increse of the number of 

tools. Most significant, the marginal part cost has been reduced from $6.25 to $6.04 due 

to the reduction in wall thickness, subsequently reducing the material cost, the cooling 

time, and the processing cost. With respect to the improved expected cost, it is advised to 

invest the effort of obtaining the FEM model. It is important to point out, that after 

creating the FEM model, the flexible design analysis has to be used to determine the 

design with the optimal trade-off between the part cost and the change cost. The FEM 

design shown above is used only to determine the likely effects of the increased 

prediction accuracy, but cannot be used to determine the ideal design giving the least 

expected cost.  
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Table 49: Value of Information Comparison  

Design Element RSM 
Design 

FEM  
Design 

Expected Cost $6.39 $6.14 

Cost of Information $0.00 $0.20 

Combined Cost $6.39 $6.34 

Probability of No Change 83.8% 61.6% 

Probability of Any Change 14.8% 38.4% 

Probability of Failure 1.3% 0.03% 

Probability of Change in Mold Temperature 14.0% 34.1 % 

Probability of Change in Thickness 5.9% 3.7% 

Probability of Change in Number of Tools 1.8% 0.0% 

Probability of Change in Material Type 2.0% 1.8% 

 

7.6 Implementation 

The exhaustive analysis of all expected outcomes and possible design changes is 

computationally expensive. The number of model evaluations increases exponentially 

with the number of design variables and design responses. In addition, each design 

change analysis requires an optimization, further increasing the number of required 

model evaluations. The monitor housing included 4 design variables and 4 design 

responses, out of which three responses where specified on one side and one response 

was specified on both sides. This generated 16 possible design changes and 24 possible 

expected outcomes. Therefore, 384 design changes where investigated and optimized. A 
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design change optimization required about 40 iterations, creating the need for 15,360 

model evaluations. The monitor housing example was implemented using Microsoft 

Excel, and utilizing a built in Solver module for optimization. The calculation of one 

flexible design analysis required about 30 minutes on a Pentium III computer with 700 

MHz. The optimization of the expected cost required 20-30 individual flexible design 

evaluations, pushing the computation time to 15 hours. 

7.7 Summary 

The flexible design methodology was demonstrated for the development of an 

injection-molding monitor housing. The methodology successfully reduced the expected 

cost by over 13%, representing a value of $470,000, compared to the optimal robust 

design. This improvement in cost does not include the additional benefits of the reduced 

development time due to design changes. The flexible design methodology also increased 

the design flexibility: the initial design required 84% of the design changes via the 

expensive adjustment of the number of tools and the wall thickness, compared to 43% for 

the flexible design. Therefore, the flexible design methodology determined a design with 

an ideal trade-off between the marginal part cost and the cost due to design changes, 

providing the design with the least expected cost. In addition, the value of information 

was investigated for a response surface model and a finite element model, indicating that 

the more accurate FEM model should significantly reduce the expected cost. 



         CHAPTER 8  

CONCLUSION 

This chapter summarizes the research described in this dissertation. The new and 

unique contributions for the engineering design research community are listed. In 

addition, further possible research to enhance the flexible design methodology is 

described and additional possible utilizations are indicated. 

8.1 Contributions 

Although the described research builds on work by other researchers as cited, 

several contributions have been made within the scope of this dissertation. This section 

describes the new and unique research for the engineering design community. 

8.1.1 Uncertainty Description and Design Requirement 

In order to enable the flexible design methodology, the prediction uncertainty had 

to be described, and the requirements on the prediction uncertainty defined. While 

probability distributions for uncertainty and yield estimation methods were previously 

developed, the combination of these two methods to formulate a quality requirement 

under uncertainty is a new contribution to the research community. This quality 

requirement facilitates the design evaluation within the flexible design methodology. The 

contribution is therefore minor compared to the following major contributions. 
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8.1.2 A Priori Design Defect Evaluation 

One of the major contributions of the research presented in this dissertation is the 

a priori evaluation of the possible design defects and the possible design changes. The 

implementation of this idea is novel, unique and a significant advancement in the area of 

design robustness against uncertainty. 

8.1.2.1 A Priori Analysis of Expected Outcomes 

The flexible design methodology evaluates the possible expected outcomes based 

on the a priori analysis of the design with respect to the uncertainty. The actual design 

responses may differ from the predicted design responses, causing an excessive number 

of defects and violating the quality requirement. The flexible design methodology 

describes a new approach that determines the different expected outcomes and the 

likelihood of these expected outcomes occurring based on the prediction uncertainty 

distribution. The exact nature of the possible expected outcomes is determined, therefore 

bringing more clarity to the possible actions to resolve the expected outcomes while still 

in the design development stage. 

8.1.2.2 A Priori Design Change Evaluation 

Based on the individual expected outcomes, alternative design changes can be 

evaluated based on the uncertainty distributions. The flexible design methodology 

analyzes all possible design changes for a given expected outcome a priori and evaluates 

the probability of a design change being selected based on economic considerations. The 

expected cost can then be evaluated including design changes, creating an objective 
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including the cost of the part and the cost of the changes. Previous research did not 

investigate this trade-off, but rather either ignored the concept of design changes 

altogether, or focused on one design change if a defect occurs. The approach to consider 

a possible design change in a trade-off with the cost of the design at the development 

stage is novel and unique and a major contribution to the research community. 

8.1.3 Design Flexibility 

Another unique contribution to the research community is the idea of design 

flexibility, where it is possible to adjust for errors by means of one or more easy to 

change design variables. Although it is common knowledge that a flexible design, i.e. a 

design which can be changed easily in order to change the design responses if necessary, 

is beneficial to the design, the actual evaluation of the expected cost with respect to the 

design flexibility including the likelihood of changing a design variable is a new and 

unique contribution to the engineering design research community. 

8.1.4 Value of Information 

Information is crucial for engineering design, and the use of information has been 

subject to much research. However, the impact of information, i.e. prediction accuracy, 

on the likelihood of design changes and the overall cost of the design as demonstrated by 

using the flexible design methodology is a novel approach to measure the value of 

information content. The simulation of design predictions using an economic model with 

less prediction accuracy is also a new contribution to the research community. This 

research allows the design team to compare the likely benefits of different prediction 

models prior to development of these models. Therefore, the described methodology 
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reduces the product development time and the product development cost by aiding the 

design team with the selection of a desirable prediction model. 

8.2 Future Research 

The research presented in this dissertation can be used to facilitate additional 

research, and selected elements of the methodology can be refined. These possibilities for 

further research are listed below. 

8.2.1 Development Time 

The flexible design methodology focuses entirely on the cost of the design, 

including the cost of possible design changes. However, it is not only the cost of a design 

that is of significance, but also, the time required to develop the complete system design. 

The problem in the evaluation of the design development time is to estimate the delays 

due to unexpected problems and design changes. The flexible design methodology can be 

expanded to include the time required for design changes in the trade-off analysis. This 

extension would provide the design team with a tool to determine the delays due to 

changes for a given design a priori and to select a design accordingly in order to reduce 

the time for changes and to include the required change time in the design development 

plan.  

8.2.2 Concurrent Design 

Within the flexible design methodology, the uncertainty causing a one-time 

difference between the predicted response and the mean actual response is evaluated only 

on the basis of the prediction uncertainty. However, there are additional sources of 
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uncertainty besides the prediction models, such as the selection of the design variables or 

the specifications. During the design development stage, some design variables might not 

be known at the beginning of the design development but rather are determined during 

the development process. Therefore, the existence of these design variables is, too, 

uncertain. For example, a flexible design might be developed during the development 

phase, where the exact value of one design variable is not yet known, as the variable 

might be dependent on another design decision at a later stage. This flexible design may 

be able to compensate for this uncertainty a priori, or it may include an easy to change 

design variable to adjust the design for the uncertainty, thus improving the design and 

reducing the overall cost. 

A frequent situation where some design variables might not yet be known exactly 

beforehand is concurrent engineering. One goal of concurrent engineering is to overlap 

design development tasks in time to reduce the overall development time. This, however, 

comes at the cost of uncertainty, where a required design variable might not yet be known 

at the start of a design development task, since the variable depends on a not yet 

completed previous task. This enables the design team to determine a flexible design with 

a small change cost and time, improving the concurrent engineering design process. Not 

only can the design be improved, but also the concurrent engineering tasks can be 

optimized to reduce the overall development time. If it is possible to determine the time 

required for a design task including possible changes due to uncertainty, it is also 

possible to compare different variable uncertainties affecting the design cost and time. 

This would, in turn enable the design team to determine the ideal order and overlap 

between concurrent design tasks to reduce the overall cost and time of the design process.  
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8.2.3 System Design 

The flexible design methodology enables the evaluation of designs with a small to 

medium number of design variables and design responses, as frequently found in 

component design or simple design systems. Further research has to be invested in order 

to improve the methodology for complex system design with a large number of design 

variables. 

8.2.4 Change Cost Improvement 

The method presented in this dissertation to determine the cost of a design change 

is on a very basic level. It is possible to improve this method. The change cost depends 

not only on the changed variables, but also on the direction and the magnitude of the 

change. For example, it requires much less effort to increase the hole diameter in a tool 

by drilling a larger hole than to reduce the hole diameter by fitting an insert into the hole. 

Improvements in change cost estimates will greatly increase the validity of results from 

the flexible design methodology. 

8.2.5 Enhanced Trade-Off between Cost and Quality 

At the current stage, the flexible design methodology has strict limits on the 

quality requirement. If the design has only a slightly smaller quality than required, a 

design change is initiated. However, in this case, the expense of the design change might 

exceed the benefit of the slightly improved quality, and economic considerations would 

advise against a design change. This situation happens very rarely for large number of 

parts, where the change cost is fixed, but the benefit of an improved quality increases 

160 



with the number of parts. However, it is possible for low production quantities that the 

cost of the design change outweighs the benefits of the improved quality. A trade-off 

between the cost of a design and the quality might be included in the flexible design 

methodology to improve the prediction accuracy. 

8.2.6 Predictive Model Feedback 

The flexible design methodology analyzes in detail the possible defects and 

design changes a priori in the design development stage, to reduce the overall expected 

cost including the part cost and the change cost. However, no further guidance is 

provided once the design is built and might have to be changed if a defect occurs. It 

would be valuable research to provide the design teams with methods to incorporate the 

information gained by the creation of the single design point into the prediction model to 

improve the prediction accuracy.  

8.3 Summary 

The flexible design methodology assesses the possible defects of a design and 

determines possible design changes a priori, integrating the results into an overall 

expected cost. The expected cost enables the adjustment of the design to reduce the 

overall expected cost during the design development stage, including possible design 

changes. 

The author believes that the handling of uncertainties, i.e. one time offsets 

between the predicted response and the actual response, is a significant area of needed 

research. While this dissertation does not solve all problems related to the handling of 
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uncertainty, it is a significant contribution to the research community. And, in due time, 

the research presented in this dissertation may find its way into the industry practice in 

order to be included in the design development process as is the robust design method 

today. 

 



APPENDIX A  

PROBABILISTIC METHODS 

This appendix provides an overview of selected probabilistic methods for the 

evaluation of response distributions as a function of the variable distributions. (Robinson 

1998) also provides and overview of different probabilistic methods for the evaluation of 

risk and uncertainty. 

A.1 Functional Prediction 

A.1.1 Functions of One Variable 

The distribution of the response can be determined analytically if the response is a 

function of one variable, whose probabilistic distribution is known. (Papoulis 1991) 

presents the equations necessary to solve this problem. Assuming the relation between 

the variable x and the response y is known. 

( )xgy =  

Equation 81 

Furthermore, assume the probabilistic density function pdfN (x) of the noise of x is 

also known. In this case, the probabilistic density function pdfN(y) of the variation of the 

response y is evaluated as shown below: 
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Equation 82 

In this equation, xn represents the solutions for the inverse of the functional 

relation in Equation 81 as shown in Equation 83. 

{ } (ygxx n
1

1 ,... −= )  

Equation 83 

For example, assume in the following system the response y is inverse related to 

the normal distributed variable x with a mean at 2 and a standard deviation of ½, with no 

additional unexplained response variation pdfN(y). A plot of the normal distribution and 

the functional relation is shown in Figure 41. 
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Equation 84 
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Figure 41: Functions of One Variable 

Applying the interim results shown in Equation 85 to Equation 82 gives the 

probability density function pdfN(y) of the response y shown in Equation 86. A plot of this 

response distribution is also shown in Figure 42. 
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Figure 42: Probability Density Function of the Function of One Variable 

The analytical approach gives the exact probability density function for a function 

of one variable. Unfortunately, this approach includes significant mathematical 

calculations, and - depending on the complexity of the functional relationships - may not 

be feasible to solve analytically. Even with the use of numerical methods, these problems 

are frequently beyond the capabilities of a numerical solver. In addition, there are few 

engineering design problems, which are only a function of one variable. Rather, a number 

of different variables are involved.  

A.1.2 Functions of Two Variables 

A similar approach using a functional evaluation can be done for a function of 

two variables as shown in Equation 87. In addition to the functional relationship between 

the response y and the variables xi, the joint probabilistic density functions of pdfN (x1) 

and pdfN(x2) of the design variables also have to be known. In this case, the probabilistic 

density function pdfN(y) of the response y is evaluated as shown in Equation 88. 
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( )21 , xxgy =  

Equation 87 

( ) ( )∫∫=
zD

NN dxdxxxpdfdyypdf 2121,  

Equation 88 

In this equation, Dz represents the area over which the probability is evaluated. 

This method is demonstrated using an example from (Devore 1995), extending it towards 

a more general case. The example analyzes a three-component mixture, where the 

combined weight of two components together is a function of the random distributed 

weight of two components, with the third component being the remainder towards a fixed 

total weight. The relation between the response y, representing the combined weight of 

the two components x1 and x2, and the two separate component weights x1 and x2 is 

described below in Equation 89, followed by the joint probability density function 

pdfN(x1, x2) for x1 and x2 in Equation 90. 
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Equation 89 

( ) 2121 24, xxxxpdf N =  

Equation 90 
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If the component x1 has a certain amount of the total weight of y, then following 

Equation 89 the other component x2 has to have the remaining weight towards y. Hence, 

it is possible to evaluate the cumulative density function cdfN(y) and subsequently the 

probability density function pdfN(y) for y as shown in Equation 91 and plotted in Figure 

43. 
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Equation 91 
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Figure 43: Response Probability Density Function 

The separate probability density functions pdfN(x1) and pdfN(x2) of the variables 

can be evaluated by integrating the joint probability over the allowed range as shown in 

Equation 92. Due to symmetry reasons, these two functions are identical for this case, 

and the function is plotted in Figure 44. 
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Equation 92 
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Figure 44: Variable Probability Density Function 

The functional evaluation of the response as a function of two variables shares the 

same advantages and disadvantages as the functional evaluation of the response as a 

function of one variable. Although the approach is mathematically exact, it cannot model 

relationships for which the transfer functions are unknown. Furthermore, if the transfer 

function for variables or noise is estimated, then the imprecise basis does not justify the 

precise estimation. In addition, the mathematical calculations are very sophisticated, and 

for relations that are more complex may not always create a solution. Finally, there are 

very few design relations, which are a function of only two variables. For more detail 

regarding the mathematical background please refer to (Papoulis 1991). 
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A.1.3 Functions of More than Two Variables 

Engineering design applications frequently have more than two variables, which 

restricts the methodologies presented above. However, there are two possible ways to 

analytically evaluate functions of more than two variables. If the variable combinations 

are independent, then it is possible to split a transfer function into a number of sub 

functions with only two variables. The probability distribution of the interim response is 

evaluated, which is then used as input for the overlaying functional relation. By breaking 

a large transfer function down into a number of sub functions with only two variables, the 

analytical method for two variables can be applied. 

If the transfer function does not allow the use of sub functions or the variables are 

dependent, the method of evaluating a response as a function of two variables has to be 

expanded, and multiple integrals have to be used. The underlying equation for a function 

of three variables is shown in Equation 93. The advantages and disadvantages for an 

analytical evaluation of a function of three or more variables are identical with the 

advantages and disadvantages of an analytical evaluation of a function of two variables. 

Note, however, that the mathematical relations become more complex as more variables 

are added. 

( ) ( )∫∫∫=
zD

NN dxdxdxxxxpdfdyypdf 321321 ,,  

Equation 93 
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A.2 Moment Matching 

The moment matching method, also known as error propagation, uses a Taylor 

series expansion to predict the mean and variance of a function of independent normally 

distributed random variables. The moment matching method is named due to the use of 

the first moment - the mean - and the second moment - the variance - of the probability 

distributions. Assume the following system shown in Equation 94 where the response y is 

a function of normal distributed design variables xi with mean mxi and deviation sxi. 
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Equation 94 

In this case, the expected mean of the response µy is a direct function of the 

expected means of the design variables µxi. Depending on the functional relation between 

the design variables xi and the design response y, the response distribution might not 

necessarily be a standard distribution. However, this method assumes a normal 

distributed response. The evaluation of the response mean and deviation uses the 

derivatives of the functional relations as shown in Equation 95. 
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Equation 95 
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The advantage of this method is the ease of computation, yet the moment 

matching method is limited as the design variables are assumed to be independent and 

normal distributed, creating a normal distributed response. This may reduce the accuracy 

of the prediction if the involved design variables are not normally distributed. (Parkinson 

et al. 1993) for example uses a moment matching method to develop a general robust 

design approach similar to the approach presented within this dissertation. 

A.3 Monte Carlo 

The Monte Carlo method evaluates a function of one or more random variables by 

sampling response values and making conclusions for the distribution of the function 

response. Using randomly distributed design variables, a design is evaluated repeatedly 

generating slightly different design responses due to the random nature of the design 

variables. Based on the set of design response values for a given design, the yield can be 

either estimated by counting the number of feasible parts, or by fitting a response 

distribution through the sample and integrating over this response distribution. 

 This method is best demonstrated using the example of section A.1.2 assuming a 

normal distributed input variable with a mean of two and a standard deviation of ½ and 

an inverse relationship between the variable and the response as shown in Equation 84. 

For 3,000 sample trials, the histogram of the input variable was evaluated as shown in 

Figure 45. This figure can be compared directly to he functional evaluation as shown in 

Figure 41, displaying a very similar curve shape. 
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Figure 45: Input Sample Values 

Applying sample values to the functional relationship, 3,000 response values were 

evaluated. The histogram of the responses is shown in Figure 46. Again, this histogram 

shows an approximately similar curve as the functional evaluation shown in Figure 42. 

Note the very long tail on the right hand side exists due to some samples being close to 

zero, which drives the inverse of the variable, i.e. the response, close to infinity. 
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Figure 46: Response Sample Values 

Small differences between the histograms above and the functional evaluation 

described earlier are due to the random nature of the Monte Carlo analysis. This analysis 

has a number of advantages and disadvantages. One advantage is that this method can 

also be used on processes for which a functional relation is not known, and the responses 

can be determined only by using experiments. In this case, a small number of 

experiments are performed, generating slightly different responses due to natural 

variation in the system. These responses can now be used to fit a probability density 

function through these responses, generating an estimate of the response distribution. 

This method is also used in a similar way to determine the actual response distributions 

during production, again measuring the design responses of multiple products and fitting 

a probability distribution through the sample. 
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Another advantage is the ease of use. While other yield evaluations require a 

significant knowledge of mathematics, Monte Carlo analyses are easy to perform and 

analyze, making this method very popular in industry. 

On the downside, however, there is a significant disadvantage. In order to predict 

the distribution of the design responses with a reasonable accuracy, a significant number 

of evaluations have to be performed. The computation time required to evaluate a Monte 

Carlo analysis depends on the complexity of the underlying simulations and the number 

of samples evaluated. Unfortunately, even for a simulation with a reasonable computation 

time, the large number of sample points needed would significantly increase the total 

computation time.  

Fortunately, there are some ways to reduce the number of runs. Assumptions are 

frequently made regarding the design responses, fitting a standard probabilistic 

distribution onto the response data samples. Most frequently, the mean and standard 

deviation of the samples are evaluated and a standard normal distribution is assumed. If 

other standard distributions besides the normal distribution are expected, it is possible to 

fit a variety of probability density distributions on the data, and to evaluate the goodness 

of fit, selecting the distribution with the closest match to the data sample.(Suresh 1997) 

describes different Monte Carlo analysis techniques in more detail.  

A.4 Comparison of the Presented Methods 

The above methods all have advantages and disadvantages. Depending on the 

application it has to be decided which method is best. Table 50 compares some of the 

advantages and disadvantages of the above methods. If normal distributions can be 
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assumed without too much loss of accuracy, then the moment matching method provides 

the largest advantage. However, if non-normal distributed variables or responses have to 

be considered, then the Monte Carlo method would be preferred except for the simplest 

models for which a functional prediction can be evaluated. For similar comparisons 

between different statistical methods, please refer to (Du and Chen 1999; Koch and 

Mavris 1998). 

Table 50: Comparison of Response Distribution Prediction Methods 

 Functional Prediction Moment 
Matching 

Monte Carlo 

Uses General 
Probability Distribution 

Yes Normal 
Distribution Only 

Yes 

Predict General 
Probability Distribution 

Yes Normal 
Distribution Only 

Yes 

Can use Simulations 
or Experiments 

No No Yes 

Functional Relation Required Yes Yes No 

Accuracy Exact Medium Depends on
sample size 

Mathematical Effort Extreme, may not 
be tenable at all 

Medium Low 

Computation Time Medium Low High 

 

 



APPENDIX B 

I-BEAM EXAMPLE 

This is a summary of the equations used for the I-Beam example. The example was 

realized using Mathematica Version 4 from Wolfram Research. The Mathematica file is  

shown below. 

I-Beam Deflection Example 

Overview 

This document is grouped in several subsections. First, the analytical model will be 

described and derived. Second, based on the analytical model a quadratic design of 

experiments will be used to fit a response surface on the data pointscalculated from the 

analytical model. Third, the RSM model will be verified and compared to the Analytical 

model. Fourth, a flexible design method will be performed. Fifth, different designs are 

compared using the flexible design methodology. 

Physical Example 

This example describes the flexible design evaluation for an I-beam with a fixed support 

and a point load at the other end. There are two main variables: the beam height H and 

the modulus EMod of the material. Both are considered to be continuous. The deflection 

is the specified response, where the deflection has to be less than the upper specification 

limit. The marginal part cost is also evaluated. The pictures below show the cross section 

and the side view of the beam, including the nomenclature of the dimensions. 

l

F
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Initialization and Functional Relations of 

the Analytical Models 

Setup of the Known Values and Specifications 

Clears up the variable space and loads required packages. 

 

Defines the Upper and Lower Constraint Limits of the Design Variables, which form the 

design space. The height H varies from the lower limit HL to the upper limit HH and the 

E modulus EMod varies form the lower limit EL to the upper limit EH. 

 

This defines the Upper Specification Limit USL in mm. The beam fails if the deflection 

is above this limit.  

 

Quality Requirement 

The quality Requirement Alpha describes the required number of deviations distance 

between the mean response and the specification limit in order to ensure consistent 
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quality. An Alpha of three represents 99.87% good parts for a one sided specification and 

99.74% for a two sided specification.  

 

Functional Relations 

This section describes the functional relations of the I-Beam example. The equations can 

be found in most engineering manuals. The following equation determined the Area 

Integral of I Beam, with W, H, w, h as described in the pictures above. 

 

This represents the deflection of the beam, where F is the load in N and l is the length in 

mm 

 

 

Calculation of the vVolume of the beam.  

 

Marginal part cost of the beam, where d is the density in kg/mm^3 and MC is the 

material cost in $/kg. 

 

 

Assumptions 

The following assumptions have been made: 

Constant Wall Thickness t (mm) 

Constant Beam Width W (mm) 

Constant Force Load F (N) 

Constant Beam Length l (mm) 
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Constant Density d (Kg/mm^2) 

Noise Standard Deviation of the Height HN (mm) 

Noise Standard Deviation of the modulus EModN (N/mm^2) 

The noise distribution are assumed to be standard normal distributed with a mean of zero 

and a standard deviation as shown below. 

 

Simplifications 

The relation of the beam web height h with the height H and the thickness t is simplified. 

The relation of the web with w based on the beam width W and the thickness t is shown. 

Material Cost MC ($/kg) is a linear function between $500/ton and $540/ton for the low 

and high modulus. 

 

 

Summary 

Deflection Equation as a function of the height H and the modulus EMod 
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Deflection Noise Standard Deviation as a function of the height H and the modulus 

EMod. The noise distributio of the deflection is assumed to be normal distributed. 

 

 

Cost equations a function of the height H and the modulus EMod. 

 

 

Design of Experiments 
The following section describes the creation of a CCD Design of Experiments to fit a 

quadratic response surface to the design space. The figure below shows the general layout 

of the design of experiments 

 

Data Evaluation 

The CCD Design of Experiments has nine data points, four at the four corners of the 

design space, one in the center and four +-  away from the center on the center axes. 
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Below is the set up of the complete variable matrix including the constant parts and the 

interactions. The rows represent the different data points. The first column is the constant 

value. The second column is the beam height, the third is the modulus, the fourth is the 

height times the modulus, the fifth is the height squared, and the sixth is the modulus 

squared. 
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This is the calculation of the responses using the analytical model. The rows refer to the 

nine data points as described above. The first column shows the deflection. The second 

column shows the standard deviation of the deflection due to the noise. The third column 

shows the marginal part cost. 
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This section shows the creation of the prediction models by solving the equation 

described by the data matrices above. Note, that the response surface model of the 

standard deviation may predict a standard deviation of equal or less than zero for certain 

design points. To avoid complications, this response surface model is limited to values 

above the smallest standard deviation from the data points. The resulting models are 

shown below. 

 

The following section can be used to determine the goodness of fit of the model. 

 

This is the response surface equation for the deflection . 
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This is the response surface equation for the deflection noise standard deviation. 

 

 

This is the response surface equation for the cost. 

 

 

Model Validation 
This section validates the Response Surface Model by using the analytical model 

Data Evaluation 

Compares the values by varying the heigh Ht, while the modulu EMods is at the center. 

The straight line is the functional model, the dashed line is the response surface model. 
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Compares the values by varying the modulus EMod, while the height H is at the center. 

The straight line is the functional model, the dashed line is the response surface model. 
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Mean and Standard Deviation of Prediction Error 

Calculates the Mean of the Error due to the fitting of the response surface model. These 

are the TRUE VALUES, as the functions are integrated for the whole design space. Note, 

that these values are NOT used for the later flexibility evaluation, as the values later are 

the result of 10 random sample points within the design space. The mean error is 

caluclated below. 

 

 

Calculates the standard deviation of the error for the whole design Space. TRUE 

VALUES! Again, the deviation used for the flexible design analysis is different and 

based on 10 random sample points. 
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Values of Selected Points 

Calculates selected data points. One point is shown per row. The columns are labeled. 
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Response Surfaces 

Plots different 3D graphs of the response surfaces for the analytical model. 
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Plots different 3D graphs of the response surfaces for the Response Surface Model 
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Exhaustive Search for Minimum Part 

Cost 
Optimizes the models.It is possible to use either the analytical models (DeflAnal, 

DeflNAnal, CostAnal) or the RSM models (DeflMod, DeflNMod, CostMod). The 

selection of the models is decided below by changing teh order of the next two selections. 
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Determines the minimum cost for the given model while satisfying the quality 

requirement. The CostTable represents the cost for a Resolution by Resolution matrix, 

where the H increases with the rows and the EMod increases with the Columns. The table 

is not shown here, as it is a 100 by 100 matrix. 

 

 

Flexible Design Methodology  
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Analyzes the flexible design methodology for a given initial design. 

Initial Design & Setup 

It is possible e to use either the analytical models (DeflAnal, DeflNAnal, CostAnal) or the 

RSM models (DeflMod, DeflNMod, CostMod). The selection of the models is decided 

below by swapping between the two different definition cells shown below. 

 

 

This defines the mean and standard deviation of the uncertainty distribution for the 

deflection. Two sources of uncertainty can be used. The MeanUAnal and DevUAnal one 

is to represent the uncertainty of the analytical model, where for example holes for 

attachments or rounded corners can weaken the beam, whereas a welded attachment may 

strengthen the beam. As these effects are not included in the analytical model, there 

might be some prediction errors of the analytical model. The MeanURSM and the 

DevURSM represents the uncertainty of the response surface model due to fitting errors. 

Note, that these values differ from the absolute mean and standard deviation of the RSM 

model as calculated above, because the values below are derived from 10 random sample 

points.  

If the analytical model is used, only the analytical uncertainty is used. If the RSM model 

is used, both the analytical uncertainty and the model fitting uncertainty are used. To 

switch between the uncertainty models, please move the appropriate sections to the end 

of this statement. 
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This defines the change cost per part. The change of the height is expensive, as this is 

assumed to require a recutting of the extrusion orifice tool. The change of the modulus is 

less expensive, as only the material is changed. Note that the change cost is in $ per part. 

The failure cost is the cost occurring if the design model fails to produce a feasible 

design. This would require a different design approach or the expansion of the current 

design approach (i.e. the considerations of beam heights larger than the upper constraint 

limit or a modulus larger than the upper constraint limit, or a different beam cross-

section) 

 

Defines the resolution of the exhaustive search algorithm. 

 

Sets up the values of the initial design with the height HA and the modulus EA. 

 

Determines the Upper Specification Limit under Uncertainty USLU. This defines the 

quality requirement, where the mean response has to be at least Alpha standard deviation 

from the upper specification limit. 
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Sets up the Uncertainty Distributions and determines the Probability of satisfying the 

Quality Requirement, i.e. the upper specification limit under uncertainty USLU. as a 

functionof the height H and the modulus EMod. 

 

 

Possible Expected Outcomes 

There are theoretical three expected outcomes possible. The design cannot violate any 

constraint, it can violate the lower specification limit under uncertainty, and it can violate 

the upper specification limit under uncertainty. Since there exists no lower specification 

limit, this case can be eliminated, and only two cases remain. The probability of each 

case occurring is evaluated in the flexible design analysis. 

Possible Design Changes 

Since there are two design variables, there are four possible design changes. It is possible, 

not to change the design at all, it is possible to change only the height, it is possible to 

change only the modulus, and it is possible to change both the height and the modulus. 

The figure below shows the possible expected outcomes and the possible design changes 

for each expected outcome. Each of the branches of this bayesian network will be 

evaluated in more detail below. The results are shown as a table, where each row 

corresponds to one end of the branches, in the same order as in the graph. The following 

flexible design methodology determines the design changes with the largest probability 

of resolving a given expected outcome. The probability of resolving the defect, the 

probability of selecting a design change from the possible changes for a given expected 

outcome and the overall probability of a design change occurring is evaluated. This 
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probability of a design change occurring is combined with the cost of this design 

including the design change. 
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Design Optimizations 

The design optimizations optimize the design for the different sub spaces. If there is no 

change, then there is no optimization necessary. This optimization determines the 

likelihood of satisfying the upper specification limit under uncertainty.The optimization 

normally depends on the defct mode, however, in this simple case with only one expected 

outcome it is posible to optimize the design merely for the probability of satisfying the 

specification under uncertainty. 

Below is the optimization for the three other sub spaces, where only the height, only the 

modulus, or both the height and the modulus is changed. The section below creates a 

contour plot of the probability of satisfying the quality requirement, using the USLU for 

the given initial design. Dark areas have low probability of satisfying the quality 

requirement, light areas have a high probability of satisfying the quality requirements. 

The contour lines are not spaced evenly to enhance the details in the areas with high 

quality. The x-axis represents the height and the y-axis represents the modulus. This 

contour plot can be used for a manual search for an optimal design for each sub space. 

The initial design is shown with the black lines with white frames. 
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Determines the Optimal Yield by changing the height H, also determines the optimal 

height. This is the one dimensional sub space where only the height can be changed. The 

search is exhaustive. 
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Determines the optimal yield by changing the modulus EMod, also determines the 

optimal modulus. This is the one dimensional sub space where only the modulus can be 

changed. The search is exhaustive. 
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Determines the optimal yield by changing the height and the modulus, also determines 

the optimal height and modulus. The table yield table has a increasing emod for the 

columns and an increasing height for the rows. This is the two-dimensional sub space 

where both the height and the modulus can be changed. The search is exhaustive. 
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Flexible Design Analysis 

Sets up the required variables for the different cases (1): No change, (2) Defect, no 

change, failure, (3) Defect, Change Height, (4) Defect, Change width, (5) Defect, Change 

both 

These elements are in the same order as the branches of the graph above at the design 

change options. The matrices below are the height and the modulus for the five design 

options as optimized above. 
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Calculates the cost based on the change cost and the marginal part cost. Note, that the 

second cost is the failure cost as defined above. The cost is shown below. 

 

 

This shows the change cost. 

 

 

This shows the total cost, Note, that the second case is the failure cost and defined 

separately. 
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Probability of defect occurring. The yield[[1,1]] is the yield for the initial design, i.e. the 

first case, representing the likelihood of the defect occurring  

 

 

Probability of satisfying the specifications after a design change. The first case is for no 

defect, therefore there will be no defects and there is certainty of no defects occurring. 

The second case is for defect, but no change, i.e. design failure, therefore a zero 

probability. This probability is not used elsewhere in the method. For the last three cases, 

the probability of satisfaction is calculated as the percentage of defects which occurred in 

the initial design, but do not occur in the current design, i.e. it is the relative improvement 

of the design. This is based on the conditional change in the probability distribution 

depending on the dfect mode. The If clause ensures that there is no division by zero (i.e. 

zero probability of defect occurring). If the probability of the defect occurring is zero, 

then this expected outcome will never happen , and all subsequent costs and probabilities 

are zero. Note, that the equations below are simplified from the main body of the 

idssertation due to the fact that only a one sided specificationis used. 
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Probability of Selecting a change from the list of changes for a given expected outcome. 

For the first case, selection can be ensured as the unchanged design will be used. For the 

last three cases:, the most economic case will be selected, the second most economic case 

only if it has excess likelihood of resolving, and the third most only if the two other have 

a smaller likelihood of resolving. The second case is the probability of failure for the 

given expected outcome, i.e. the remainder between the three last cases and certainty. 
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The Probability of a change occurring is the probability of the change being selected and 

the probability of the expected outcome occurring. 

 

 

The individual parts of the expected cost are the total part cost times the probability of 

occurring. 
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The Expected cost is then simply the sum of the individual costs and their occurrence. 

 

 

Gives an overview report of the flexible design evaluation. 
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This gives the table with all expected outcomes and design change combinations. Due to 

the number of columns, the table is split into multiple tables for printability. This table 

contains the different values calculated above. 
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This gives a graphical representation of the possible design changes, where the line 

thickness represents the likelihood of a certain defect or design change occurring. 
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Previously Calculated Flexible Design 

Evaluations  
The values shown below are simply CutCopy from the results summary of the flexible 

design evaluation above. 

Large Uncertainty 

Shows different design points for designs with the large uncertainty from the RSM 

model.  
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Small Uncertainty for RSM model 
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ANALYTICAL Model, Small Uncertainty 
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Flexible Design Methodology Including 

Design Change Uncertainty 
Analyzes the flexible design methodology for a given initial design, assuming uncertainty 

in the design change. 

Initial Design & Setup 
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It is possible e to use either the analytical models (DeflAnal, DeflNAnal, CostAnal) or the 

RSM models (DeflMod, DeflNMod, CostMod). The selection of the models is decided 

below by swapping between the two different definition cells shown below. 

 

 

This defines the mean and standard deviation of the uncertainty distribution for the 

deflection. Two sources of uncertainty can be used. The MeanUAnal and DevUAnal one 

is to represent the uncertainty of the analytical model, where for example holes for 

attachments or rounded corners can weaken the beam, whereas a welded attachment may 

strengthen the beam. As these effects are not included in the analytical model, there 

might be some prediction errors of the analytical model. The MeanURSM and the 

DevURSM represents the uncertainty of the response surface model due to fitting errors. 

Note, that these values differ from the absolute mean and standard deviation of the RSM 

model as calculated above, because the values below are derived from 10 random sample 

points.  

If the analytical model is used, only the analytical uncertainty is used. If the RSM model 

is used, both the analytical uncertainty and the model fitting uncertainty are used. To 

switch between the uncertainty models, please move the appropriate sections to the end 

of this statement. 
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The uncertainty distributions of the design change is set to have a standard deviation of 

0.1 mm. 

 

This defines the change cost per part. The change of the height is expensive, as this is 

assumed to require a recutting of the extrusion orifice tool. The change of the modulus is 

less expensive, as only the material is changed. Note that the change cost is in $ per part. 

The failure cost is the cost occurring if the design model fails to produce a feasible 

design. This would require a different design approach or the expansion of the current 

design approach (i.e. the considerations of beam heights larger than the upper constraint 

limit or a modulus larger than the upper constraint limit, or a different beam cross-

section) 

 

Defines the resolution of the exhaustive search algorithm. 

 

Sets up the values of the initial design with the height HA and the modulus EA. 

 

Determines the Upper Specification Limit under Uncertainty USLU. This defines the 

quality requirement, where the mean response has to be at least Alpha standard deviation 

from the upper specification limit. 
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Sets up the Uncertainty Distributions and determines the Probability of satisfying the 

Quality Requirement, i.e. the upper specification limit under uncertainty USLU. as a 

function of the height H and the modulus EMod. 

 

 

Possible expected outcomes 

There are theoretical three expected outcomes possible. The design cannot violate any 

constraint, it can violate the lower specification limit under uncertainty, and it can violate 

the upper specification limit under uncertainty. Since there exists no lower specification 

limit, this case can be eliminated, and only two cases remain. The probability of each 

case occurring is evaluated in the flexible design analysis. 

Possible Design Changes 

Since there are two design variables, there are four possible design changes. It is possible, 

not to change the design at all, it is possible to change only the height, it is possible to 

change only the modulus, and it is possible to change both the height and the modulus. 

The figure below shows the possible expected outcomes and the possible design changes 

for each expected outcome. Each of the branches of this bayesian network will be 

evaluated in more detail below. The results are shown as a table, where each row 

corresponds to one end of the branches, in the same order as in the graph. The following 

flexible design methodology determines the design changes with the largest probability 

of resolving a given expected outcome. The probability of resolving the defect, the 

probability of selecting a design change from the possible changes for a given expected 

outcome and the overall probability of a design change occurring is evaluated. This 
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probability of a design change occurring is combined with the cost of this design 

including the design change. 
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Design Optimizations 

The design optimizations optimize the design for the different sub spaces. If there is no 

change, then there is no optimization necessary. This optimization determines the 

likelihood of satisfying the upper specification limit under uncertainty.The optimization 

normally depends on the defct mode, however, in this simple case with only one expected 

outcome it is posible to optimize the design merely for the probability of satisfying the 

specification under uncertainty. 

Below is the optimization for the three other sub spaces, where only the height, only the 

modulus, or both the height and the modulus is changed. The section below creates a 

contour plot of the probability of satisfying the quality requirement, using the USLU for 

the given initial design. Dark areas have low probability of satisfying the quality 

requirement, light areas have a high probability of satisfying the quality requirements. 

The contour lines are not spaced evenly to enhance the details in the areas with high 

quality. The x-axis represents the height and the y-axis represents the modulus. This 

contour plot can be used for a manual search for an optimal design for each sub space. 

The initial design is shown with the black lines with white frames. 
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Determines the Optimal Yield by changing the height H, also determines the optimal 

height. This is the one dimensional sub space where only the height can be changed. The 

search is exhaustive. 
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Determines the optimal yield by changing the modulus EMod, also determines the 

optimal modulus. This is the one dimensional sub space where only the modulus can be 

changed. The search is exhaustive. 
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Determines the optimal yield by changing the height and the modulus, also determines 

the optimal height and modulus. The table yield table has a increasing emod for the 

columns and an increasing height for the rows. This is the two-dimensional sub space 

where both the height and the modulus can be changed. The search is exhaustive. 
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Flexible Design Analysis 

Sets up the required variables for the different cases (1): No change, (2) Defect, no 

change, failure, (3) Defect, Change Height, (4) Defect, Change width, (5) Defect, Change 

both 

These elements are in the same order as the branches of the graph above at the design 

change options. The matrices below are the height and the modulus for the five design 

options as optimized above. 
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Probability of defect occurring. The yield[[1,1]] is the yield for the initial design, i.e. the 

first case, representing the likelihood of the defect occurring  

 

 

Probability density function of Conditional Defect  
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Cumulative density function Distribution of Conditional Defect  
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Determines the possible specification violations which can be adjusted by means of the 

designchange deterministically. 

 

 

Determines the probability Distribution for the sucess of a design change based on the 

deterministic change limit and the given standard deviation. The deterministic limit 

represents the maximum likelihood point, i.e. the top of the uncertainty distribution Note, 

that the values less than the limit are cut off, and the distribution is scaled so that the area 

underneat the curve is zero. 
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Determines the cummulative Distribution for the sucess of a design change based on the 

above PDF.  
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Sorts the three possible design changes according to the max deterministic value of 

satisfaction. 

 

 

Calculates the cost based on the change cost and the marginal part cost. Note, that the 

second cost is the failure cost as defined above. The cost is shown below. 

 

 

This shows the change cost. 
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Determine Cost of most reliable change as a function of the encountered defect. The 

failure cost is also shown as a dashed line. 
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Determine Cost of second reliable change as a function of the encountered defect.The 

failure cost and the most reliable change are also shown as dashed lines. 
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Determine Cost of thirdmost reliable change as a function of the encountered defect.The 

failure cost and the most and secondmost reliable change are also shown as dashed lines. 
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Plots the overall min cost for each possible defect. Also shows which change is the most 

efficient for which defect. Where the step function is at 0.2, the change in modulus is the 

best attempt. Where the step function is 0.4, the change in height is the best attempt. For 

0.6 the change in height and modulus is the best attempt, and for 0.8, no change but a 

direct failure cost is the best solution. 
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Finds the switchover points. 

 

 

 

 

Determines the likelihood of the first change being sucessful 
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Integrates the minimum cost over the possible defects including the probability density 

function of the defect occurring. 
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The Expected cost is then simply the sum of the expected change cost and the unchanged 

cost and their occurrence. 

 

 

Gives an overview report of the flexible design evaluation. 
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Optimal Results 

Uncertainty of RSM Model: Initial Design with least Expected Cost 

 

Uncertainty of RSM Model: Initial Design with least Part Cost (Robust Design) 
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         APPENDIX C  

INTERPOLATION AND EXTRAPOLATION 

Some certain cases of assumptions are described below in more detail, as they are 

used frequently in engineering to predict the behavior of the design space based on a 

finite number of sample points. These methods are the interpolation between data and the 

extrapolation outside of existing data. These methods use simplifications and 

assumptions, however due to the frequent occurrence of interpolations and extrapolations 

in engineering design they are discussed in more detail below. 

C.1 Interpolations 

The prediction model often interpolates between known sample points by creating 

a response surface model. Theoretically, any continuous function can be used to 

interpolate between known sample points. First and second order functions are used 

frequently, creating a linear or quadratic interpolation between known sample points. 

This interpolation can contain both assumptions and simplifications. Depending on the 

interpolating function, the model might not fit the sample points correctly. If the number 

of sample points exceeds the number of model parameters, a perfect fit of the model to 

the data cannot be guaranteed nor is necessarily desirable. This is visualized in Figure 47, 

where four data points are utilized to determine three parameters of a quadratic equation.  
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Figure 47: Simplifications during Model Interpolation 

The actual behavior of the system between the sample points is usually not 

known, but assumed to behave according to the interpolating model. This is visualized in 

Figure 48, where an inverse function is interpolated using a quadratic function.  
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Figure 48: Interpolation Model Assumptions 

Interpolations are a basis of design of experiments, where a linear or quadratic 

prediction function is usually fit to a number of sample points taken at specific locations 

within the design space. Fourier transformations also fit a function on existing data and 

are used frequently in frequency analysis to create a mathematical model of the measured 
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frequency. The uncertainty due to interpolation has been investigated by numerous 

researchers. (Glaeser et al. 1995) analyzes mathematical techniques for uncertainty and 

sensitivity analysis, concluding that if an actual model is available it should be used and 

not simplified by fitting a prediction equation on the model due to the increased 

uncertainty. (Brown et al. 1998) determines the uncertainty of regression models based 

on uncertainty and variation in the sample data. (Chipman 1998) uses Bayesian methods 

to analyze and describe the model uncertainty of design of experiments. (Steele et al. 

1993) sought to estimate the uncertainty of experiments with a small sample size, where 

for example only a single data value was measured, based on previous experience with 

similar cases.  

C.2 Extrapolations 

Extrapolations utilize the predicted model outside of the space investigated with 

the sample data. The possibility for error increases with the distance from the known data 

points. In general, an interpolation is preferred over an extrapolation due to the potential 

better model accuracy. However, in some cases it is only possible to take sample data on 

one side of the range of interest due to the complete unavailability or other extreme 

difficulty obtaining the data. The prediction accuracy of extrapolations can be improved 

by utilizing historic data of known cases. Figure 49 shows the example inverse function 

with a quadratic model extrapolated to about twice the width of the original data. The 

prediction becomes very inaccurate with increasing distance from the closest data point. 

In this case, it is not possible to make a valid extrapolation without the understanding of 

the basic behavior of the model. If for example it would be known that the original 
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function has an inverse relation, the extrapolated function would also utilize an inverse 

term, extending the prediction accuracy over a greater range. 
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Figure 49: Extrapolation of Data with Large Error 

A prime example of extrapolation is the behavior of a global system with time, 

e.g. the stock market or the weather report. The prediction of the weather of the next day 

would be much more accurate if the weather in two days would be known. However, the 

weather in two days is not (yet) known. Therefore, tomorrow’s weather is extrapolated 

based on the known weather data. The prediction accuracy also decreases with the 

distance of the prediction. While the prediction of tomorrow’s weather is usually fairly 

accurate, the prediction of the weather a week from today is much more uncertain. In 

engineering, extrapolations are frequently used in experiments, where a full-scale 

experiment would require too many resources. The aerodynamic behavior of airplanes is 

usually tested in a small scale and extrapolated to the aerodynamics of a full sized plane. 

Similarly, the flow dynamics of an ocean freighter is determined on a small scale and 

extrapolated to the predicted behavior of the full-scale ship. A comparison of the 
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extrapolation model to historic cases is used to improve the accuracy of the prediction. 

(Cho et al. 1999) describes a method to reduce uncertainty in extrapolating small-scale 

model data using the example of a small ship model pulled through the water. 

 



APPENDIX D  

MONITOR HOUSING PREDICTION MODELS 

D.1 Introduction 

The prediction models for the monitor housing are a combination of response 

surface models and functional relations derived from analytical models and experimental 

data. The functional relations are identical for all material types, are listed below, and are 

based on the design variables and the response surface models. The response surface 

models differ for each material. The elements of the quadratic response surface are listed 

in the followings sections. 

D.2 Design Variables 

The utilized design variables are shown below, including the constraint limits 

spanning the valid design space. 

Design Variable Type Unit LCL UCL 
Melt Temperature Continuous ºC 230 270 
Mold Temperature Continuous ºC 50 70 
Eject Temperature Continuous ºC 60 90 

Injection Time Continuous s 1 5 
Thickness Continuous in 1.5 3.5 

Flow Length Continuous cm 29 57 
Material Type Discrete # 1 4 

Number of Tools Discrete # 3 4 
Availability Continuous hr/week 40 160 

Projected Area Continuous cm2 1,000 2,000 
Production Volume Discrete # 10,000 1,000,000 
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D.3 Functional Relations 

The tool cost increases linearly with the flow length from $150,000 for the lower 

constraint limit of the flow length at 29cm to $300,000 at the upper constraint limit of the 

flow length. 

( )
7

3750058 −
⋅−= FlowLengthToolCost  

The tool cost per part depends on the number of tools, the production volume, and 

the tool cost. 

VolumeProduction
lCostCurrentTooolsNumberOfTorPartToolCostPe ⋅

=  

The production time depends on the cycle time, the production volume, the 

availability, and the number of tools. 

3600olsNumberOfTotyAvailabili
VolumeProductionCycleTimeTimeProduction

⋅⋅
⋅

=  

The clamp force depends on the melt pressure, the projected area, and the flow 

length. 

( )
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⋅

⋅
⋅

−⋅
=  

The marginal part cost is the sum of the material cost, the process cost, and the 

tool cost per part. 
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rPartToolCostPetProcessCosstMaterialCortCostMarginalPa ++=  

D.4 Response Surface Model Fitting Error 

The table below gives an overview of the errors in fitting the quadratic response 

surface to the sample data for selected response predictions. 

Response % Fitting Error Material 1 Material 2 Material 3 Material 4 
Mean -0.11 -0.21 -0.10 -0.9 Melt Pressure  

Deviation 9.05 10.72 9.54 10.89 
Mean 0.01 0.01 0.01 0.01 Cycle Time 

Deviation 0.96 1.08 0.97 0.93 
Mean 0.00 0.00 0.00 0.00 Shrinkage 

Deviation 0.00 0.00 0.00 0.00 
Mean 0.03 0.02 0.03 0.03 Process Cost 

Deviation 2.10 2.18 2.11 2.08 
Mean 0.00 0.00 0.00 0.00 Material Cost 

Deviation 0.00 0.00 0.00 0.00 
 

D.5 Change Cost Matrix 

The cost of a design failure is assumed to be $10 per part, representing the cost 

required for a redesign in order to satisfy the specifications. 

 Mold Temperature Thickness #Tools Material Task Cost
Change Settings 0 1 1 0  

Remove Tool from Machine 0 1 0 0 120 
Recut Tool 0 1 0 0 80000 

Cut New Tool 0 0 1 0 200000 
Insert Tool 0 1 1 0 120 

Change Mold Temp 1 1 1 0 20 
Remove Previous material 0 0 0 1 30 

Dry material 0 0 0 1 10 
Insert New material 0 0 0 1 20 

Change Melt Temperature 0 0 0 1 25 
Purge Material 0 0 0 1 25 
Produce Part 1 1 1 1 20 

Confirm Part Quality 1 1 1 1 60 
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D.6 Response Surface Model Material 1 

 MeltPressure CycleTime Shrinkage ProcessCost MaterialCost
Constant 953.6630 -14.34062536 0.419999838 -1.1923832 1.46031E-06

MeltTemp -2.3703 0.575199472 -3.07371E-16 0.0199722 -8.56953E-15
MoldTemp -1.7126 -1.527865174-0.007499994-0.053050869 -2.22988E-14
EjectTemp 0.2901 -0.218913755 4.78495E-16 -0.007601165 1.55801E-14

InjectionTime 83.9043 1.686768758 2.57823E-16 0.058568368 9.29812E-15
FlowLength 13.4039 0.481942962 3.56623E-16 0.016734149 9.47488E-15
Thickness -539.7894 4.165143997 -2.00708E-15 0.144623031 2.0778687 

MeltTemp * 
MoldTemp 0.0029 0.000176947 0 6.14402E-06 0 
MeltTemp * 
EjectTemp 0.0000 4.96705E-11 0 1.5522E-12 0 

MeltTemp * 
Injectionime -0.0295 3.72529E-10 0 -1.16415E-11 0 
MeltTemp * 
FlowLength -0.0139 0 0 0 0 
MeltTemp * 
Thickness 0.4209 0.023013896 0 0.000799093 0 

MoldTemp * 
EjectTemp 0.0000 -1.6888E-09 0 -7.76102E-11 0 

MoldTemp * 
InjectionTime -0.2704 -7.45058E-10 0 -1.62981E-10 0 
MoldTemp * 
FlowLength -0.0077 0 0 0 0 
MoldTemp * 
ThicknessIn 0.6947 0.127413951 0 0.004424096 0 
EjectTemp * 

InjectionTime 0.0000 -1.49012E-09 0 -1.70742E-10 0 
EjectTemp * 
FlowLength 0.0000 0 0 0 0 
EjectTemp * 

Thickness 0.0000 -0.20074216 0 -0.006970214 0 
InjectionTime* 

FlowLength 0.3908 0 0 0 0 
InjectionTime* 

Thickness -22.4292 7.45058E-09 0 -1.16415E-09 0 
FlowLength* 

Thickness -2.1890 0 0 0 0 
MeltTemp2 0.0012 -0.001220246 6.14743E-19 -4.23696E-05 1.71391E-17
MoldTemp2 -0.0038 0.011305169 5E-05 0.000392541 1.85824E-16
EjectTemp2 -0.0019 0.002857905 -3.18996E-18 9.92328E-05 -1.03868E-16

InjectionTime2 0.0237 -0.114461453 -4.2826E-17 -0.003974353 -1.55431E-15
FlowLength2 -0.0142 -0.005073084-3.76738E-18 -0.000176149 -9.97971E-17
Thickness2 83.3348 1.957968586 3.98986E-16 0.067985039 3.57628E-07
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D.7 Response Surface Model Material 2 

 MeltPressure CycleTime Shrinkage ProcessCost MaterialCost 
Constant 953.6630 -14.34062536 0.419999838 -1.1923832 1.46031E-06 

MeltTemp -2.916432 0.714025 -3.07E-16 0.024793 -9.9747E-15 
MoldTemp -1.500862 -1.896617 -0.0075 -0.065855 -2.3331E-14 
EjectTemp 0.319798 -0.27175 4.78E-16 -0.009436 1.8624E-14 

InjectionTime 64.27515 1.852521 2.58E-16 0.064324 8.9859E-15 
FlowLength 13.2699 0.598261 3.57E-16 0.020773 1.204E-14 
Thickness -502.1715 5.170409 -2.01E-15 0.179528 2.2638011 

MeltTemp * 
MoldTemp 0.003142 0.00022 0 7.63E-06 0 
MeltTemp * 
EjectTemp 0 9.44E-10 0 2.95E-11 0 

MeltTemp * 
Injectionime -0.032539 3.73E-10 0 1.16E-11 0 
MeltTemp * 
FlowLength -0.015673 0 0 0 0 
MeltTemp * 
Thickness 0.498297 0.028568 0 0.000992 0 

MoldTemp * 
EjectTemp 0 1.89E-09 0 1.02E-10 0 

MoldTemp * 
InjectionTime -0.239172 7.45E-10 0 -1.16E-10 0 
MoldTemp * 
FlowLength -0.007562 0 0 0 0 
MoldTemp * 
ThicknessIn 0.637781 0.158165 0 0.005492 0 
EjectTemp * 

InjectionTime 0 4.97E-10 0 -3.26E-10 0 
EjectTemp * 
FlowLength 0 0 0 0 0 
EjectTemp * 

Thickness 0 -0.249191 0 -0.008652 0 
InjectionTime* 

FlowLength 0.315609 0 0 0 0 
InjectionTime* 

Thickness -17.23047 -7.45E-09 0 3.03E-09 0 
FlowLength* 

Thickness -2.128256 0 0 0 0 
MeltTemp2 0.002163 -0.001515 6.15E-19 -5.26E-05 1.9949E-17 
MoldTemp2 -0.004747 0.014034 5E-05 0.000487 1.9443E-16 
EjectTemp2 -0.002132 0.003548 -3.19E-18 0.000123 -1.2416E-16 

InjectionTime2 0.356327 -0.142087 -4.28E-17 -0.004934 -1.5023E-15 
FlowLength2 -0.010024 -0.006297 -3.77E-18 -0.000219 -1.2655E-16 
Thickness2 73.27531 2.430526 3.99E-16 0.084393 2.3842E-07 
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D.8 Response Surface Model Material 3 

 MeltPressure CycleTime Shrinkage ProcessCost MaterialCost 
Constant 1061.506 -15.14566 0.42 -1.220337 2.1756E-06 

MeltTemp -2.976547 0.588683 -3.07E-16 0.02044 -8.3787E-15 
MoldTemp -1.922636 -1.563678 -0.0075 -0.054294 -2.1366E-14 
EjectTemp 0.220819 -0.224045 4.78E-16 -0.007779 1.5319E-14 

InjectionTime 90.10143 1.702867 2.58E-16 0.059127 5.676E-15 
FlowLength 13.61516 0.49324 3.57E-16 0.017126 8.4085E-15 
Thickness -564.6116 4.262779 -2.01E-15 0.148013 1.91803241 

MeltTemp * 
MoldTemp 0.002905 0.000181 0 6.29E-06 0 
MeltTemp * 
EjectTemp 0 -2.48E-10 0 -1.24E-11 0 

MeltTemp * 
Injectionime -0.036055 3.73E-10 0 0 0 
MeltTemp * 
FlowLength -0.015281 0 0 0 0 
MeltTemp * 
Thickness 0.480797 0.023553 0 0.000818 0 

MoldTemp * 
EjectTemp 0 4.97E-10 0 5.59E-11 0 

MoldTemp * 
InjectionTime -0.292703 -7.45E-10 0 -4.66E-11 0 
MoldTemp * 
FlowLength -0.007016 0 0 0 0 
MoldTemp * 
ThicknessIn 0.750281 0.130401 0 0.004528 0 
EjectTemp * 

InjectionTime 0 4.97E-10 0 2.17E-10 0 
EjectTemp * 
FlowLength 0 0 0 0 0 
EjectTemp * 

Thickness 0 -0.205448 0 -0.007134 0 
InjectionTime* 

FlowLength 0.384885 0 0 0 0 
InjectionTime* 

Thickness -23.33703 -7.45E-09 0 -4.19E-09 0 
FlowLength* 

Thickness -2.187401 0 0 0 0 
MeltTemp2 0.002209 -0.001249 6.15E-19 -4.34E-05 1.6757E-17 
MoldTemp2 -0.003262 0.01157 5E-05 0.000402 1.7805E-16 
EjectTemp2 -0.001472 0.002925 -3.19E-18 0.000102 -1.0214E-16 

InjectionTime2 0.074693 -0.117144 -4.28E-17 -0.004068 -9.4369E-16 
FlowLength2 -0.013088 -0.005192 -3.77E-18 -0.00018 -8.8726E-17 
Thickness2 84.91378 2.003864 3.99E-16 0.069579 3.5763E-07 
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D.9 Response Surface Model Material 4 

 MeltPressure CycleTime Shrinkage ProcessCost MaterialCost 
Constant 1069.545 -12.81427 0.42 -1.139384 2.3544E-06 

MeltTemp -3.458471 0.549633 -3.07E-16 0.019084 -1.1588E-14 
MoldTemp -1.827734 -1.459955 -0.0075 -0.050693 -2.1133E-14 
EjectTemp 0.261228 -0.209184 4.78E-16 -0.007263 1.6193E-14 

InjectionTime 91.83537 1.656244 2.58E-16 0.057508 6.7446E-15 
FlowLength 13.02322 0.460523 3.57E-16 0.01599 9.7641E-15 
Thickness -536.316 3.980016 -2.01E-15 0.138195 1.99115396 

MeltTemp * 
MoldTemp 0.002877 0.000169 0 5.87E-06 0 
MeltTemp * 
EjectTemp 0 -2.98E-10 0 -4.66E-12 0 

MeltTemp * 
Injectionime -0.035852 7.45E-10 0 5.82E-11 0 
MeltTemp * 
FlowLength -0.014442 0 0 0 0 
MeltTemp * 
Thickness 0.449953 0.021991 0 0.000764 0 

MoldTemp * 
EjectTemp 0 -2.78E-09 0 -1.15E-10 0 

MoldTemp * 
InjectionTime -0.293891 0 0 -2.33E-11 0 
MoldTemp * 
FlowLength -0.007424 0 0 0 0 
MoldTemp * 
ThicknessIn 0.755156 0.121751 0 0.004227 0 
EjectTemp * 

InjectionTime 0 0 0 -2.02E-10 0 
EjectTemp * 
FlowLength 0 0 0 0 0 
EjectTemp * 

Thickness 0 -0.19182 0 -0.00666 0 
InjectionTime* 

FlowLength 0.403306 0 0 0 0 
InjectionTime* 

Thickness -23.52266 0 0 2.56E-09 0 
FlowLength* 

Thickness -2.125033 0 0 0 0 
MeltTemp2 0.003383 -0.001166 6.15E-19 -4.05E-05 2.3176E-17 
MoldTemp2 -0.003918 0.010803 5E-05 0.000375 1.7611E-16 
EjectTemp2 -0.001742 0.002731 -3.19E-18 9.48E-05 -1.0794E-16 

InjectionTime2 -0.13171 -0.109374 -4.28E-17 -0.003798 -1.1172E-15 
FlowLength2 -0.013095 -0.004848 -3.77E-18 -0.000168 -1.0256E-16 
Thickness2 81.64316 1.870942 3.99E-16 0.064963 5.9605E-07 
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