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Abstract 
A design representation has been developed 
that derives the feasible decision set from 
defined specifications and linear performance 
functions. This representation allows the 
design team to rationally choose a design 
concept and dynamically improve the design. 
Several applications of the representation are 
reviewed. Current research utilizing the 
representation is exploding in diverse 
directions: 1) developing improved Simplex-
like algorithms for efficient feasibility 
analysis, 2) extending the representation to 
non-linear systems, 3) modeling of uncertainty 
and flexibility during development, and 4) 
incorporating preference functions for design 
optimization. 
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Objective 
The objective of current research is to enable a 
design representation that captures the 
engineering specification, customer prefer-
ences, mechanistic behavior, and designer 
decisions. It is desired that this representation 
evolve dynamically throughout the develop-
ment cycle, improving in fidelity and reducing 
uncertainty with additional information. The 
representation should provide support for 

rational design decisions: modeling the 
feasibility of different concept designs and 
driving the design towards true optimality in 
the layout and detailed design stages. 
 
A second objective of current research is to 
provide linkages between the developing 
representation and other prevalent design 
methodologies. In the long term, a rational 
design methodology is sought that integrates 
key elements from decision based design, 
Taguchi design, axiomatic design, design of 
experiments, and others. Ultimately, the 
developed methodology will be accessible to 
and accepted by practicing engineers through 
simple software tools. 
 
Approach 
The current research approach is to establish a 
feasibility map based on the known system 
behavior and extreme allowable constraints of 
the design. Different design concepts with 
major variance in system topologies and 
behaviors can individually be modeled. Once 
the global feasible space has been estimated, 
many design decisions can be made based on 
performance, uncertainty, flexibility, cost, etc. 
 
The feasibility map, or design and/or process 
window (domain dependent), can be generated 
from a set of specifications and prediction 
models. The prediction models, which relate 
controlled product and process variables to 



product quality attributes, may be derived 
from analysis, experience, and/or experiments 
utilizing design of experiment or response 
surface methods. These prediction models 
typically have the form: 

   (1) ),...,,,( 321 nii xxxxfy =

Denoting the ith quality attribute as yi, a typical 
specification can be expressed as LSLi ≤ yi ≤ 
USLi. In many cases, the quality attribute is a 
one-sided constraint. Then the specification 
becomes LSLi ≤ yi or yi ≤ USLi. It is not trivial 
to define the proper specification limits due to 
the potential conflict among the multiple 
quality attributes. Working with the 
development team, the product and process 
engineer may jointly update the specification 
limits during an iterative development process.  
 
The details of the algorithm for mapping the 
product/process feasibility are available [1, 2]. 
Essentially, the algorithm is a three-step 
process: 1) combinatorial sub-system 
generation; 2) analysis of permuted 
constraints; and 3) resolution of extreme 
points. Each of these steps will be briefly 
described. 
 
Sub-System Generation: Consider a system 
consisting of n design or process control 
variables and m quality attributes.  The 
extreme limits of the feasible process are 
formed by the boundary of one or more active 
constraints in the defined system. The key to 
finding feasibility boundary, then, is to 
establish the critical constraint combinations 
for the system. The first step in the solution 
requires the generation of a list z, composed of 
n elements of x augmented with m elements of 
y: 
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A k-subset [3] is then defined consisting of 
exactly Cn

n+m elements, where 
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This set represents all possible combinations 
of the control variables, x, with the quality 
attributes, y. For four control variables and 
three quality attributes, a set of thirty-five sub-
systems needs to be analyzed. For this 
example, Figure 1 shows a graph representing 
the 35 subset combinations, where 
{C1}={x1,x2,x3,x4}, {C2}={x1,x2,x3,y1}, and 
{C35}={x4,y1,y2,y3}.  
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Figure 1: k-Subset of Four Control Variables 

and Three Quality Attributes 

Analysis of Permuted Constraints: Each 
defined sub-system consisting of n variables is 
then analyzed for all permutations of the 
defined constraints. The permutation list 
consists of P2

n elements where 

  (4) n
nP 22 =

This set represents the control limits and 
specification limits that correspond to the 
variables defined in the Ck subset. For the 
given example with four control variables, 
Figure 2 shows a graph of sixteen constraints 
is analyzed, where for P1|C1={LCL1,LCL2, 
LCL3,LCL4},P2|C1= {LCL1,LCL2,LCL3,UCL4}, 
…,P15|C35={LCL4,USL1,USL2,USL3}, P16|C35= 
{UCL4,USL1,USL2, USL3}. 
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Figure 2: Permutation of Constraints for k-

Subset with Four Variables 

A set of extreme points is then solved for each 
k-subset of the system with its corresponding 
permutation of constraints. The number of 
sub-system analyses that are performed is 
equal to Cn

n+m·P2
n, or 35 times 16 equals 560 

cases for the preceding example as represented 
by the graph shown in Figure 3. It should be 
noted that only a small number of the sub-
systems that are analyzed will satisfy the 
feasibility requirements of all process 
variables and quality attributes. 
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Figure 3: Graph of k-Subset Combinations 

and Constraint Permutations 

Resolution of Extreme Points: Process 
engineers are interested in both the global 
feasible set of process conditions and quality 
attributes. The global feasible set of process 
conditions has been termed the decision space, 
since decisions are made about the processing 

variables to achieve the quality attributes. The 
global feasible set of quality attributes has 
been termed the performance space, since the 
performance of the process is ultimately 
measured by the quality and cost of the 
manufactured product. The described 
algorithm solves both of these spaces. 
 
The result of the preceding analysis is an 
exhaustive set of processing conditions and 
their resulting quality attributes, where each 
set corresponds to one solution of a derived 
subsystem. Only a subset of these points lay 
on the extreme feasible boundary of the global 
system. Continuing with the previous example, 
Figure 4 plots a set of 560 points in the 
performance space (quality attributes, yi) 
corresponding to the solution of all k-subset 
combinations and constraint permutations. 
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Figure 4: Extreme Points from All Subsystems 

For linear system models, convexity properties 
significantly simplify the solution of the global 
feasible space. Based on the convexity, the 
decision space and the performance space are 
the convex hulls of the extreme points. Convex 
hull methods, such as qHull [4], enable the 
efficient reduction of potential extrema to 
derive the desired feasibility maps. Figure 5 
plots the global feasible performance space for 
the preceding example. The decision space 
(processing variables, xj), and a feasible space 
for any desired combination of processing 
variables and quality attributes are similarly 
derived from the local extrema of all 
subsystems. 



 

y2

y3

y1

y2

y3

y1

y2

y3

y1
 

Figure 5: Global Extreme Points for System 

The set of extreme points can be utilized for 
vital process interpretation by returning from 
the space representation to the graph 
representation. Figure 6 is a graph of the k-
subset combinations and constraint 
permutations from Figure 3 where all non-
extreme subsets have been removed. The set 
has been reduced from 560 subsystems to 16 
subsystems. Though difficult to inspect the 
static image, the graph representation provides 
vital information about the trade-off between 
process variable and multiple quality 
attributes. Figure 6, for example, indicates that 
x3 is never critical to changing the quality 
attributes. Detailed inspection also indicates 
that the lower specification limits on y2 and y3 
are never critical. Such information is useful in 
specification development, process design, and 
process set-up. 
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Figure 6: Graph of k-Subset Combinations 

and Constraint Permutations 

Discussion: The feasibility maps are useful 
since they provide quantitative bounds on 

process variables and quality attributes from 
system models. The methods allow the process 
engineer to explicitly examine the trade-off 
between multiple quality attributes, or to 
compensate for a change in a processing 
variable by changing other processing 
variables. Alternatively, the process engineer 
may decide to hold certain processing 
variables and/or quality attributes fixed, and 
selectively examine the effect of remaining 
processing variables on the possibly reduced 
range of quality attributes. 
 
Like most practical problems, the exploration 
of the global feasible space is a high-order 
polynomial or NP problem. The Cn

n+m 
constraint combinations dominate the 
polynomial order of the calculation time. 
However, a lower-upper decomposition [5] 
adopted in the algorithm has decreased the 
number of the linear system equations from 
Cn

2n+2m to Cn
n+m. Moreover, the left hand side 

corresponding to the coefficients of the kth 
subsystem only needs to be inverted once for 
each set of permuted constraints. When the 
number of quality attributes is under 10, the 
solution requires negligible computation time. 
Numerical methods, such as Monte-Carlo 
simulation, have been implemented for 
validation purposes and shown to require 
orders of magnitude greater computational 
time for reduced accuracy. 
 
Accomplishments 
The design representation has been completed 
for linear systems. Currently, further research 
is investigating improved Simplex-like 
algorithms for efficient feasibility analysis, 
which is necessary for analysis of larger 
systems and discreet, non-convex multi-linear 
systems. If successful, computational 
geometry approaches can be utilized to extend 
the representation to non-linear systems by 
modeling the feasible volumes in high 
dimensional spaces. Significant and very 
interesting research is also investigating the 



use of the representation, specifically the 
handling of uncertainty throughout the 
development cycle as the design and the 
design model improve. This research is 
leading directly to approaches for considering 
controllability, coupling, and flexibility in 
design. Moreover, concepts from multi-
attribute utility theory are being considered to 
allow the modeling and incorporation of 
preference functions for design optimization 
with minimal information and overhead 
requirements. Finally, these resulting estimates 
of design feasibility and utility can be utilized 
as a performance measurement for the efficient 
derivation of optimal design of experiements. 
 
While the diverse and challenging nature of 
the current research may suggest lack of 
significance in past accomplishments, the true 
value of the research is established through 
completed applications using the linear 
representation: 
 
Comparison of decision and constraint 
based design: Beam design has been widely 
used as an engineering problem to demonstrate 
multiattribute design methods. A schematic 
picture of a beam structure and its design 
parameters are given in Figure 1. This 
application is part of an airframe design with 
the cyclic loading P and Q. Assuming that 
Aluminum 2024-T3 is used, the permissible 
maximum stress of the material corresponding 
to 107 cycles, σper, equals 124MPa, and its 
Young's Modulus, E, equals 72.4GPa. The 
case study was solved with constraint-based 
reasoning and decision based design 
approaches utilizing the described 
representation. 

Pmax=600 kN

Qmax=50 kN

X1

X2

X4

X3

200 cm

 Figure 1. Beam Design 

 
Three attributes, cross section area y1, static 
deflection y2, and maximum stress y3 are 
specified to measure the overall performance. 
The performance attributes were formulated 
[6]. The resulting design feasibility is shown in 
Figure 8. 
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Figure 8: Constraint-Based Feasibility 

In each method, the representation was used to 
find a feasible design, and then improve 
unsatisfactory performance attributes within 
the specification. The current design vector 
X*=(80, 39.4, 0.9, 2.57)T, acquired after a few 
steps from the first infeasible vector, gives the 
performance Y*=(313.6, 0.028, 47.2)T. The 
figure reveals that X* is a noninferior solution. 
Nevertheless, other noninferior solutions also 
exist according to different preferences on the 
performance attributes. Also, the design 
sensitivities in the Figure illustrate that the 



noninferior trade-off between the cross-section 
area, y1, and the vertical deflection, y2, can be 
obtained by adjusting the width x2 or the 
bottom-thickness x4. For the sake of argument, 
it is assumed that the designer prefers a 
smaller area. Then the performance space 
leads the design vector to decrease x2 and x4 to 
X'=(80, 30, 0.9, 2)T and Y'=(205.5, 0.045, 
66.5)T. Similarly, the approach can be applied 
to each mutual space to acquire the desired 
overall performance. 
 
The constraint based method adopted a typical 
systematic approach in which the designer 
defines the performance attributes first, and 
then sets a specification for each attribute. 
Generally, these specification limits are 
selected by the designer without complete 
knowledge of the design problem. Such a 
design approach is criticized as lacking a 
rational basis, though it is commonly used.  
 
As such a decision-based approach was also 
used which presents another formulation of the 
beam design, which replaces the performance 
attributes (area, deflection and stress) with 
final decision attributes (profit and risk). Thus, 
the design objective is to maximize the profit 
of the beam application and minimize the risk 
of product failure.  The resulting feasibility is 
shown in Figure 9. 
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Figure 9: Decision Based Feasibility 

 

The boundary in the risk-profit space 
constitutes the Pareto Optimal set. The 
extreme points A, B, and C respectively 
corresponds to three performance attributes 
(13%, 4⋅10-8), (65%, 10-5) and (98%, 0.099%). 
In order to maximize the profit and minimize 
the risk, any design alternative on ABC will be 
an "Optimal" solution. Since high reliability is 
expected for the airframe design, the designer 
is likely to select a solution closer to the point 
A. Utilizing the assistance of the performance 
space, a final design alternative may be 
selected as X=(80, 44.4, 0.9, 2)T with  27.6% 
profit and 2⋅10-7 risk to fail during  its 108 life 
cycles. Alternatively, if the main purpose of 
the design is to capture the maximum profit, 
the designer would probably choose another 
higher risk and higher profit option. 
 
Figure 10 provides a comparison of the beam 
designed by the constraint based reasoning and 
decision based approach. It is noted that the 
design solution in Figure  is only one element 
of the Pareto Optimal set for each of the two 
approaches. The solution itself depends on 
how the designer chooses the trade-off of 
multiple attributes. Given different 
preferences, other beam designs would likely 
be selected.  

Constraint Based
Reasoning

Decision Based
Design  

Figure 10: Comparison of Beam Designed by 
CBR and DBD 

 
 
 



Development of a Process Window for 
Digital Video Disk Manufacturing: Injection 
molding is the primary manufacturing process 
in the creation of compact and digital video 
discs. Each disc is composed of an optically 
transparent substrate (typically polycarbonate), 
with one or more substrates containing a 
reflective metalized data surface.  For 
prerecorded media, the data is stored on a disc 
in the form of pits that are molded into the disc 
during the injection molding process.  The data 
is part of the disc; the data is not written in a 
secondary operation as in magnetic media.  
The bonding process combined with the small 
definition of data pits requires stringent 
flatness specifications of each DVD substrate.  
In addition, substrate thickness and 
birefringence play significant roles in the 
ability of the DVD laser to properly read the 
optical media [7-9]. The number and tightness 
of the quality requirements makes the DVD 
manufacturing process difficult to set-up. 
 
A system model for the substrate molding 
process has been previously presented [10]. 
Consider a process with four control 
parameters (xj) consisting of cooling time, first 
stage clamp tonnage, first stage clamp time, 
and second stage clamp tonnage. The quality 
attributes (yi) and specifications are defined as: 
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Using linear regression techniques, a linear 
empirical model of the system was generated, 
along with the feasible process window shown 
in Figure 10. 
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Figure 11: Feasible, Dynamic Decision Space 

DVD manufacturing is a difficult challenge for 
the plastics industry. Given the production 
volumes and fierce global competition, savings 
of tenths and hundreds of a second in cycle 
time are crucial to profitability.  New 
applications involving material, mold, or 
machine changes may require days of process 
investigations until an acceptable process 
settings are identified. The developed process 
window thus provides a method for navigating 
and negotiating multiple quality attributes 
when used by a trained process engineer.  
 
It should be noted that each of the quality 
specifications have been tightened by three 
standard deviations from nominal to ensure 
99.7% production yields with the feasible 
process settings as described by (Parkinson et. 
al., 1993). It is the goal of the process engineer 
to develop a robust and economic molding 
process. As such, the process engineer may 
elect to minimize the cycle time and then 
adjust other attributes to create a robust 
process. This can be accomplished by first 
setting x3 (stage one clamping time) to its 
corresponding lower control limit, then 
adjusting other process parameters. 
 



Derivation of a Design/Process Flexibility 
Index: Assume a manufacturing process 
where the likelihood of setting a quality 
attribute to any specific value is uniformly 
distributed with a probability p. In this case, 
the likelihood of accepting a set of quality 
attributes within the specification range is: 

  (7) rangeionspecificatUSL

LSL i
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where Vspecification_range indicates the volume of 
the specifications, which is computed as a 
simple multiplication of the specification 
distances. Similarly, the likelihood of 
accepting a set of quality attributes within the 
global feasible space is: 

 rangefeasible
i
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where the volume of the feasible space, 
Vfeasible_range, can be readily computed using 
quick hull algorithms [4]. The process 
flexibility index can then be computed as a 
ratio of the two probabilities: 
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For a uniformly distributed likelihood of 
quality attribute acceptance, a Cf greater than 
1.0 indicates that the process is able to deliver 
a more diverse set of quality attributes than 
those defined in the specifications. This 
definition of the process flexibility index is not 
dependent on the current operating point, since 
the likelihood of a change is uniformly 
distributed. 
 
Many quality attributes, however, are defined 
with just a one-sided specification. For 
example, part weight may have a specified 
maximum, or a manufactured material 
property may have a specified minimum.  The 
described algorithms for computing the 
feasible space continue to function for such 
one-sided specifications; reducing the number 
of specifications will tend to increase the 
feasible space. However, the definition of the 
process flexibility metric is not valid for one-

sided specifications, since the volume of the 
specification range is undefined when there is 
no bound for the complementary specification 
limit. For one-sided specifications, a weighting 
function is necessary to discount the likelihood 
of quality attribute occurring very far from the 
operating region. A reasonable probabilistic 
approach is next discussed. 

 

The selection of the weighting function is of 
primary importance. Ideally, the weighting 
function should represent the true likelihood of 
process selection based on the necessary 
changes in the quality attributes. To 
accommodate inevitable shifts of the average 
in a process, Motorola Six Sigma guidelines 
have specified a ±6σ production tolerance on 
either side of the nominal value [11].  It is 
commonly believed that the 6σ approach was 
developed to reduce the defect rate to less than 
three rejections per million manufactured 
units. However, the original motivation of the 
approach was to ensure a 3σ yield given a 
long-term 3σ shift in the mean or 
specifications! Based on this premise, a 
probabilistic approach is developed that 
explicitly defines the flexibility of the process. 
 
Consider the probability density function 
about a current operating point as shown in 
Figure 8. This density function does not 
represent the distribution of the ith quality 
attribute due to noise, but rather the likelihood 
for needing to change the ith quality attribute 
due to external effects. As shown in the figure, 
there is equal probability that the quality 
attribute may need to be increased or 
decreased from the mean value, and some 
small probability that the quality attribute will 
need to be reduced below the lower 
specification limit.  
 
The shaded area indicates the feasible region 
for this quality attribute without violating other 
quality attributes or requiring the process to 



operate beyond its specified control limits. 
Using normal statistics, the probability of the 
process being able to accommodate changes in 
the ith quality attribute according to the 
proscribed probability density function is: 

  (10) ( ) i

UFL

LFL i
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i
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where LFLi and UFLi are the lower and upper 
feasible limits for the ith quality attribute, as 
derived from the described feasibility analysis. 
The likelihood for evaluating the need for a 
process change within the specified limits can 
be similarly evaluated as: 
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where LSLi and USLi are the specification 
limits for the ith quality attribute. The 
complementary specification limit may be set 
to –∞ or +∞ for one-sided specifications. The 
univariate process flexibility index for both 
one and two sided specifications is then 
defined as: 

 ( )
( )rangeionspecificat

rangefeasible

i

ii
fC _

_

1

1

φ
φ

−

−

Φ

Φ
=

 (12) 

where Φ-1 is the inverse of the standard normal 
cumulative distribution, which converts the 
probability back to a z-score (a measure of 
volume very similar to equation (10)). This 
definition of the process flexibility is 
dependent upon the current operating point of 
the manufacturing process, since this 
determines the likelihood of operating outside 
the specification or feasible range. 
 
A process flexibility index can be computed 
for each quality attribute. Since most 
manufacturing processes must meet multiple 
quality specifications, it is desirable to 
condense this vector of flexibility indices 
down to one scalar that is representative of the 
composite process flexibility. Several forms of 
multivariate indices have been proposed for 
process capability [12] and product robustness 
[13].  The multivariate index of process 

flexibility should reflect the combined loss if 
the manufacturing flexibility is insufficient to 
deliver multiple quality attributes.  Assuming 
independence between changing multiple 
quality attributes, the joint probability of the 
process delivering needed changes in the 
quality attributes within the feasible region is: 
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The joint probability of the process delivering 
needed changes within defined specifications 
is: 
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The multivariate process flexibility index may 
then be defined as: 
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As the process flexibility index increases, the 
process is better able to significantly change 
the quality attributes. It should be noted that 
there are substantial behavioral differences 
between the two definitions from equations 
(10) and (16). While both definitions are 
useful, the flexibility index of equation (10) is 
not dependent on the current level of the 
quality attributes, since the likelihood of 
placing a quality attribute at any location is 
uniformly distributed. The definition of 
equation (16) also exhibits significant 
behavioral differences. Specifically, the results 
of this definition can be equal to or less than 
zero even when a significant feasible region 
exists. Similar to a normalized z score, a Cf of 
zero indicates that there is a 50% likelihood 
that the process will be able to deliver the 
desired quality attributes. Similar to the Cpk 
metric, scores of less than zero indicate that 
the process is increasingly unlikely to provide 
the desired levels of the quality attributes. 
 
Significant research has been motivated by 
limitations of the injection molding process. 
To investigate the flexibility of the injection 



molding process, a half-factorial design of 
experiments [14] was performed to determine 
the main effects between the important process 
parameters and three critical part dimensions 
in a commercial printer housing: 
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In this equation, the machine parameters have 
been scaled to the range of 0 to 1, indicative of 
the maximum feasible processing range for 
this application.  The resulting coefficients of 
the linear model are actual changes in part 
dimensions (measured in mm). It should be 
noted that once tooling is completed, the 
dimensional changes available through 
processing are quite limited though 
functionally significant. 
 
There are two significant conclusions that can 
be drawn from this system model.  First, all 
three of the dimensions react similarly to 
changes in the process settings.  Thus, the 
molding process is nearly fully coupled and 
behaves as a one degree of freedom process in 
which only one quality attribute is 
controllable. Second, the equation shows the 
relative effect that each of the processing 
variables can have on the product quality 
attributes. Pressure was the most significant 
process variable, followed by temperature, 
velocity, and others.   
 
To enhance the flexibility of the molding 
process, dynamic valves were designed and 
implemented to meter the flow and pressure of 
the melt to the mold cavity [15]. The current 
implementation, named Dynamic Feed, is 
shown in Figure 9. The pressure drop and flow 
rate of the melt is dynamically varied by the 
axial movement of each valve stem which 
controls the gap between the valve stem and 
the mold wall. By de-coupling the control of 
the melt at different valve stem positions, melt 
control at each gate can override the effects of 

the molding machine and provide better time 
response and differential control of the melt. 
Each valve acts as an individual injection unit, 
lessening dependency on machine dynamics.  
 

 
Figure 12: Dynisco HotRunner’s Dynamic 

Feed™ System 

The material shrinkage and dimensions change 
at differing locations in the part based on the 
pressure contours and histories around the 
gates. The ability to change individual 
dimensions or other quality attributes without 
re-tooling mold steel provides significant 
process flexibility. It is possible to augment 
equation (17) with the additional degrees of 
freedom and re-examine the controllability of 
the three part dimensions: 

P1
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P3
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ScrewSpeed
eTemperatur

Velocity
Pressure

L3
L2
L1

21.000.002.000.0
16.000.017.010.0
00.060.031.000.0

01.003.002.001.0
00.005.009.003.0
01.008.005.002.0

There are two significant implications of this 
result.  First, the closed loop control of cavity 
pressures has significantly reduced the 
dependence of part dimensions on machine 
settings, as evidenced by the reduction in the 
magnitude of coefficients for the primary 
machine settings.  This effect has also been 
evidenced by reductions in the standard 
deviations of multiple part dimensions by an 
average factor of five, resulting in an increase 



in the process capability index, Cp, from less 
than 1 to greater than 2. 
 
Utilizing the described methods, the feasible 
performance spaces for the conventional and 
new molding process are mapped in Figure 10. 
Using equation (10), the process flexibility for 
conventional molding was computed as 0.02, 
barely capable producing of any changes in 
product quality. The lack of process flexibility 
is a primary reason for engineering changes 
and delays for molded components. The 
process flexibility for Dynamic Feed was 
similarly calculated as 0.7. The greater 
flexibility of the new process enabled four 
companies to cut the time from mold design to 
finished part down to hours instead of weeks, 
as validated for five different applications in 
five successive days at National Plastics 
Exposition in the McCormick Center in 
Chicago [16]. 
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Figure 13: Feasible Performance Spaces for 
Conventional Molding and Dynamic Feed 
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