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ABSTRACT 

Allocating buffers in manufacturing systems is one of easiest ways to improve the throughput of the system, as changes can 
be implemented quickly and the initial cost of the change is low. Yet, while an increase in the buffer size usually increases 
the throughput, it often also increases the work in progress and the makespan, therefore increasing the inventory and the time 
to the customer. Subsequently, the trade off between the throughput, the work in progress, and the makespan are of signifi-
cant research interest. This paper describes a general prediction model of these performance measures for different buffer size 
increases based on only a single simulation. A fully automated implementation of the simulation analysis and prediction 
model for manufacturing systems of any size and complexity is available. The method can be used for flow shops, job shops, 
and serial or parallel systems.  

1 INTRODUCTION 

The optimization of manufacturing systems and other discrete events systems is one of the most important and most re-
searched subjects in discrete event simulation (Boesel et al. 2001; Fu et al. 2000). Subsequently, there is a large body of re-
search in the area of discrete event optimization (Azadivar 1999; Swisher et al. 2000). One of the easiest ways to improve a 
manufacturing system is to adjust the buffer allocation, as the initial cost of adding or removing buffers is usually only a frac-
tion of the cost for adding processing machines or changing the system layout.  

Buffers allow a better utilization of the bottleneck machines by reducing the idle time (starved and blocked) thereof. In 
particular, buffers serve two purposes: They reduce the starving time of machines by providing additional parts and the 
blocking time of machines by providing additional free spaces, thus improving the throughput of the system. However, this 
improvement comes at a cost. Besides the cost of providing the buffer spaces, there will be an increased number of parts in 
the system, i.e. the work in progress (WIP) is increased, creating additional cost for the inventory. Even more significant, the 
makespan increases, and the system responds slower to production changes and customer orders, reducing the ability to pro-
duce Just In Time (JIT). Therefore there has to be a trade off between a small WIP & makespan (i.e. small buffers) and a fast 
production rate (i.e. large buffers). An excellent discussion of the effect of buffers can be found by Conway et al. (1988) and 
others (Brittan 1996; Caramanis, Pan, and Anli 2001). 

There is a large body of research related to buffer allocation. Most of the methods are based on building a metamodel re-
quiring numerous repetitions, for example by using simulated annealing and genetic algorithms (Spinellis and Papadopoulos 
1999a; Spinellis and Papadopoulos 2000a; Spinellis and Papadopoulos 2000b), neural networks (Altiparmak, Dengiz, and 
Bulgak 2002), gradient based searches (Gershwin and Schor 2000; Levantesi, Matta, and Tolio 2001; Schor 1995), or tabu 
searches (Shi and Men 2002). However, in industry it is usually difficult to obtain the large number of replications needed to 
implement the model, and the use of these methods is inefficient. Other approaches are based on a functional approximation 
and evaluation (Enginarlar, Li, and Meerkov 2001; Enginarlar et al. 2002) and knowledge based methods (Vouros and Papa-
dopoulos 1998), or combinations of analytical and simulation based methods (Nakano and Ohno 2000). 

This paper focuses on the area of buffer allocation by creating a prediction model to estimate the effect of additional 
buffer capacity onto the system performance using only a single simulation. The presented model has the advantages that the 
approach is fully automated and therefore easy to use, and that the method is based on only a single simulation, therefore al-
lowing the modeling of complex systems without the need of a large number of repetitions. This method works for large sys-
tems, balanced and unbalanced systems, and serial and parallel manufacturing systems and can be adapted to non-
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manufacturing discrete event systems. The method is based in part on the shifting bottleneck detection method (Roser, Naka-
no, and Tanaka 2002a; Roser, Nakano, and Tanaka 2003). 

2 SIMULATION EXAMPLE 

The presented method will be demonstrated using a complex simulation example, consisting of 7 machines M1 to M7 and 2 
different part types in a branched system as shown in Figure 1. The first machine M1 is never starved, and the last machine 
M7 is never blocked. Nine different buffer locations are considered, and buffers of capacity 1 have been added to BM3, 
AM4, BM5, and AM5. While the machine cycle times are constant, the machines are randomly delayed by exponential dis-
tributed failure times. The simulation time was 500 days, using the TOPQ simulation software (Kubota, Sato, and Nakano 
1999; Nakano et al. 1994). The system is well balanced with M3 being the main bottleneck, and M2, M5 and M6 being sec-
ondary bottlenecks. The system completed one part every 55.7s, or an average of 64.7 parts per hour.  

 

 
Figure 1: Example Layout 

 

3 CAUSES OF STARVING AND BLOCKING SITUATIONS 

Buffers improve the system throughput by reducing the idle time (blocking and starving) of the machines. Therefore, to un-
derstand the buffers it is crucial to understand the blocking and starving of the machines, the causes thereof, and, most im-
portant the path to the causes and the buffer locations in between. This method analyzes every starving or blocking occur-
rence of every machine in the simulation, and finds the cause of the starving and blocking, and, more important, the buffer 
locations on the path between the idle machine and the cause thereof. The time a possible buffer location is part of a path is 
determined for each machine. 

There are also four possible modes how a buffer can affect another machine as shown in Table 1. A buffer can provide 
either additional parts or spaces. Usually, parts are given to starved machines downstream (Mode I), and spaces are provided 
to blocked machines upstream (Mode IV). However, a buffer may also relieve a blocked machine indirectly by providing 
parts to another machine (Mode II), or relieve a starved machine indirectly by providing spaces to another machine (Mode 
III). For example, in Figure 1, machine M2 is providing parts to both machines M3 and M5. In some cases, machine M3 is 
starved for parts. This may be due to the fact that M2 cannot deliver parts, because M2 is blocked by M5. Therefore, adding 
free spaces to the buffer BM5 will reduce the blocking of M2 and therefore the starving of M3 (Mode III).  

 
Table 1: Effect Modes of Buffers on Machines 
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Modes Starved Blocked 
Buffer: 
Provide Parts 

I II 

Buffer: 
Provide Spaces 

III IV 

 
The analysis of the causes of starving and blocking has to distinguish between these four modes. The percentage of the 

time a buffer j has an effect on a starved machine i is named %EI
i,j and %EIII

i,j for modes I and III and the percentage of the 
time a buffer j has an effect on a blocked machine i is named %EII

i,j and %EIV
i,j for modes II and IV respectively. The effects 

can range from 100% (for example an adjacent downstream buffer is always in the path between the blocked machine and the 
cause thereof) to 0%, where the buffer is never in the path between the idle machine and the cause thereof.  

3.1 Analysis Logic 

To find the cause of an idleness of a machine, an algorithm has been developed that follows the cause from machine to ma-
chine or buffer until the cause of the idle period has been found. While depending on the detail of the available data, there 
may some ambiguity, the following set of rules provide a good estimate for the search of the cause of an idle period. In this 
algorithm, it is also assumed that the loading time of parts to and from a machine is negligible and that a buffer is always be-
tween two machines and two machines only (the branched system in the example uses a transfer machine to realize the 
branches).  

A machine is always either active (A), blocked (B) or starved (S). The definition of active includes not only working ma-
chines, but also machines under repair or performing a tool change. For blocked machines, there are a total of 5 possible situ-
ations, determining the next machine/buffer in the search for the cause of the blocked machine. An overview of the situations 
is given in Figure 2, and the 5 cases are listed below. 

 

 
Figure 2: Situations with Blocking of Machine Mi 

 
1. If the downstream machine is blocked, continue the search with the downstream machine. 
2. If the downstream buffer is full, continue the search with the downstream buffer. 
3. If the downstream machine is active, the machine is the cause of the block. Stop the search. 
4. If the downstream machine is starved, continue the search with the downstream machine by looking upstream for 

the cause of the starve of the downstream machine. 
5. If the downstream buffer is not full, the buffer is the cause of the block due to insufficient speed. Stop the search. 
 
The numbers in the figure and the list also represents the ranking if more than one situation is possible due to more than 

one downstream machine/buffer. Always follow the situation with the lowest number. For example, if a blocked machine is 
followed by both a full buffer (Case 2) and a not full buffer (Case 5), the block is most likely caused by the full buffer (Case 
2) or a downstream machine thereof. 

For starved machines, there are also a total of 5 possible situations, determining the next machine/buffer in the search for 
the cause of the starved machine. An overview of the situations is given in Figure 3, and the 5 cases are listed below. 

 
Figure 3: Situations with Starving of Machine Mi 
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1. If the upstream machine is starved, continue the search with the upstream machine. 
2. If the upstream buffer is empty, continue the search with the upstream buffer. 
3. If the upstream machine is active, the machine is the cause of the starve. Stop the search. 
4. If the upstream machine is blocked, continue the search with the upstream machine by looking downstream for the 

cause of the block of the upstream machine. 
5. If the upstream buffer is not empty, the buffer is the cause of the starve due to insufficient speed. Stop the search. 
 
Again, the numbers in the figure and the list also represents the ranking if more than one situation is possible due to more 

than one upstream machine/buffer. Always follow the situation with the lowest number. For example, if a starved machine is 
preceded by both an empty buffer (Case 2) and a not empty buffer (Case 5), the starve is most likely caused by the empty 
buffer (Case 2) or an upstream machine thereof. Using this set of rules, it is possible to find the cause of an idle period for all 
idle periods of all machines, and to determine the period of time a buffer location was part of the path to the cause of an idle 
machine. This allows the conclusion of the effect of a buffer onto the different machines. 

3.2 Analysis Results 

The presented example has been analyzed, and the causes of the blocking and starving of the machines has been established. 
Figure 4 presents the results for machines M3 and M5 in graphical form, showing the path of the starves (cross-hatched) and 
blocks (diagonal-hatched) from machine M3 and machine M5 to the machine causing the starve or block. The width of the 
path represents the fraction of the starves/blocks following this path. 

 

 
Figure 4: Causes of Blocking and Starving of Machines M3 and M5 

For example, machine M3 is blocked 6.1% of the time. Whenever machine M3 is blocked, the path to the cause of the 
block leads to the next downstream machine M4 (100% of the blocked time). However, M4 itself is rarely the cause of the 
block. Most the paths continue to machine M6 (78% of the blocked time), and M7 (46% of the blocked time). Therefore, a 
buffer increase before machine M7 affects the blocking of machine M3 46% of the time. Machine M3 is also starved for 
5.8% of the time. The path to the cause of the starve splits, with 38% of the starving periods caused by machine M2, and 62% 
following to machine M5. From machine M5 the paths continue to M6 (27% of the starving time), and from there to M7 
(15% of the starving time).  

The causes of the starving and blocking of machine M5 can be traced similarly, with the path to the cause of the blocks 
continue to machine M6 (99% of the blocked time) and M7 (57% of the blocked time). The path to the cause of the starves 
splits towards M2 (55% of the starved time), and M3 (40% of the starved time), continuing to M4 (7% of the starved time). 
The path to the causes of the blocked and starved periods has to be analyzed for all machines to estimate the effect of buffers. 

3.3 Discussion of the Effect of Buffers 

The path between the idle machines and the cause thereof allows an estimation of the effect of buffers. Only buffers in these 
path affect the machines. Furthermore, there are different modes in which a buffer can affect a machine as discussed in Table 
1. For example in Figure 4, if the buffer before machine M3 can provide parts, the starving of M3 is reduced (Mode I). At the 
same time, if the buffer can provide additional spaces, the starving of machine M5 is also reduced (Mode III). The buffer be-
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fore machine M6 has an especially interesting effect, as it not only reduces the blocking of machine M3 by providing spaces 
(Mode IV), but also reduces starving on the very same machine M3 by providing spaces to machine M5 (Mode III).  

4 SINGLE SIMULATION PREDICTION MODEL 

This section predicts the change in the system performance based on an increase in the buffer capacity of one or more buff-
ers. 

4.1 Expected number of Parts in a Buffer  

The same buffer can have different effects depending on the number of parts and the number of spaces provided to the ma-
chines in the system. Therefore, the first step is to estimate the mean number of parts in a buffer, and subsequently the mean 
number of additional parts and the mean number of additional free spaces if a buffer is increased. There are a number of 
methods available in the literature, most of them based on a decomposition approach (Bouhchouch, Frein, and Dallery 1993; 
Dallery and Frein 1989; Spinellis and Papadopoulos 1999b). This paper uses a estimation of the mean number of parts based 
on the shifting bottleneck detection approach (Roser, Nakano, and Tanaka 2002a; Roser, Nakano, and Tanaka 2003), but the 
reader may choose any suitable method of his/her choice, as long as the additional number of parts ΔBP

j and free spaces ΔBS
j 

can be estimated based on the change in the buffer size ΔBj of buffer j. 

4.2 Additional Parts and Spaces for Each Machine 

The next step estimates the number of additional parts ΔMP
i available in front of machine i to reduce starving and the addi-

tional number of spaces ΔMS
i available after machine i to reduce blocking. This estimation is based on the additional number 

of parts ΔBP
j and free spaces ΔBS

j available in all buffers j, and the effect of the buffer into the machines for the four modes 
%EI

i,j, %EII
i,j, %EIII

i,j and %EIV
i,j as shown in equations (1) and (2). 
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4.3 Possible Reduction in the Time per Part for Each Machine 

After estimating the number of additional parts and free spaces available for each machine, the possible reduction in the time 
per part of the machines can be estimated. Each additional part available in front of the machine allows the machine to work 
longer by avoiding starving periods. Similarly, each available free space after the machine allows the machine to work longer 
by avoiding blocking periods. The maximum additional time that can be worked depends on the additional number of parts 
ΔMP

i, spaces ΔMS
i, and the mean cycle time CT

i needed to produce one part. For example, if there would be one additional 
part ΔMP

3 available in front of machine M3, then machine M3 with a cycle time CT
3 of 140s could avoid starving periods up 

to 140s completely and reduce all remaining starving periods by 140s.  
The mean time that can be reduced therefore depends on the distribution of the starving and blocking times of the ma-

chines, and the probability density function of the starving time distribution pdfMS
i(t) and the probability density function of 

the blocking time distribution pdfMB
i(t) are needed to estimate the reduction in the idle times of the machines. Figure 5 shows 

the cumulative density function of the idle time distributions of selected machines as measured in the example. As the exam-
ple includes both deterministic events and random events, the resulting idle time distributions are a combination of determin-
istic and random distributions as can be seen from the deterministic steps in the otherwise random distribution.  
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Figure 5: Selected Idle Time Distributions 

 
The mean reduced idle time can be calculated by integrating the probability density functions pdfMS

i(t)and pdfMB
i(t) 

multiplied by the time t between the time 0 and the upper limit defined by the cycle time CT
i and the additional number of 

parts ΔMP
i or spaces ΔMS

i. The mean waiting time of the entire distribution can be calculated by setting the upper limit of the 
integral to infinite. The ratio of these two integrals is the percentage reduction of the waiting time. Combining this percentage 
reduction with the percent of the time a machine is starved %MS

i or blocked %MB
i gives the overall percentage reduction of 

the mean starving time per part %ΔTS
i and the mean blocking time per part %ΔTB

i. This is shown in equations (3) and (4). 
The total percentage reduction in the time between parts %ΔTi

P for machine i is the sum of the percentage reduction of the 
starving times %ΔTS

i and blocking times %ΔTB
i as shown in equation (5).  
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The above equations estimate the possible reduction in the time between parts %ΔTi

P for all machines i based on the ad-
ditional number of parts before and free spaces after the machine and the blocking and starving time distributions. However, 
this estimation does not yet take the complex interactions in the system into account, and the predicted machine improvement 
may not be realized because other machines continue to block and starve this machine. The transition from a possible ma-
chine improvement to the actual system improvement depends on the bottlenecks and is described below. 

4.4 System Performance Estimation 

The previous step estimated the improvement in the machine performances based on the change in the buffers. However, this 
improvement may not be realized because other machines continue to block or starve this machine. To estimate the system 



 

 

improvement based on the individual machine improvements, the contribution of the individual machines to the system per-
formance has to be determined, i.e. which machines constrain the system and by how much.  

In prior research (Roser, Nakano, and Tanaka 2002a) we have developed a bottleneck detection method based on the ac-
tive periods of machines that reliably and accurately detects not only the main bottlenecks, but also secondary bottlenecks 
and non-bottlenecks. The likelihood of a machine i constraining the system is described as the bottleneck probability %BNi, 
which is given as the percentage of the time a machine constrains the system. This probability %BNi can range from 0% 
(never a bottleneck) to 100% (always a bottleneck).  

This bottleneck probability has been used to estimate the effect of a machine improvement onto the system performance 
(Roser, Nakano, and Tanaka 2002b) as part of a machine performance prediction model based on a single simulation. The 
bottleneck probability is now used in a very similar approach to estimate the system performance improvement based on the 
machine performance improvement. While the shifting bottleneck detection method distinguishes between sole (unique) bot-
tlenecks and shifting bottlenecks (bottlenecks in the process of changing from one machine to another), this method uses the 
sole bottleneck probability. 

The bottleneck probability %BNi of a machine i describes what effect a percentage improvement of the time between 
parts %ΔTi

P of machine i would have on the percentage improvement of the time between parts of the system %ΔTP. The im-
provement of the system %ΔTP is simply the sum of the individual machine improvements %ΔTi

P weighted by the bottleneck 
probability %BNi as shown in equation (6). 
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To get from the initial time between parts of the system TP to the improved time between parts of the system TP* simply 

reduce the initial time TP by the percentage reduction %ΔTP as shown in equation (7). This predicted time per part for in-
creased buffers TP* can then easily be used to predict other system performance measures like the make span or the work in 
progress. 
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 (7) 

5 VALIDATION 

The prediction model has been tested for various simulation systems, as for example an eight machine straight manufacturing 
line, a three machine assembly line, a two parallel machines with a shared buffer, etc. This section presents the results of the 
example as shown in section 2. This example was selected because it is the most complex example out of the investigated 
manufacturing systems, and comparable to real manufacturing systems found on the factory floor. Not only are there two part 
types in a branched system, the system is also well balanced with 4 different machines out of 7 being primary and secondary 
bottlenecks. Different buffer have been simulated for various sizes, and the simulation results have been compared with the 
predicted results based on the initial simulation.  

The initial system contains very few buffers, and different buffer increases have been studied. Figure 6 shows the com-
parison of the predicted time per part to the measured time per part for increases of the buffer AM2 located after machine 
M2. This buffer has been increased from the initial capacity of one up to a capacity of 10. The continuous line shows the 
measured data, including the 95% confidence intervals, and the dotted lines shows the predicted system performance. Over-
all, the predicted results show approximately the same tendency as the measured data, and, while the prediction is not perfect-
ly accurate, the prediction model is reasonably close to the measured data. The overall root mean squared error RMSE was 
0.34s. 
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Figure 6: Performance Prediction for Buffer AM2 

 
Figure 7 shows the comparison of the predicted time per part to the measured time per part for the buffer BM3 located 

before machine M3. Again, the continuous line shows the measured data including the 95% confidence intervals, and the dot-
ted lines shows the predicted system performance. The predicted performance follows the measured data very nicely. The 
overall root mean squared error RMSE was only 0.24s. 
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Figure 7: Performance Prediction for Buffer BM3 

 
Figure 8 shows the comparison of the predicted time per part to the measured time per part for the buffer AM3 located 

after machine M3. While the prediction is close to the measured values for small changes, the prediction overshoots the 
measured data for larger changes. The overall root mean squared error RMSE was 0.38s. 
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Figure 8: Performance Prediction for Buffer AM3 

 
Overall, the prediction model is sufficiently accurate in view of the complexity of the model. The prediction model per-

formed also very well for simpler models as for example an eight machine sequential system shown in Figure 9. The predic-
tion model can therefore be used as part of a buffer allocation procedure, where the buffer prediction model is used to com-
pare a large number of systems rapidly for a fast optimization, with the resulting optimal system being verified using a 
conventional simulation. 
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Figure 9: Performance Prediction for an Eight Machine Serial System 

6 IMPLEMENTATION 

The method has been implemented in a software analysis tool for the TOPQ simulation engine. A screenshot of the software 
is shown in Figure 10. Besides a thorough statistical analysis and a bottleneck detection, this software also produces a com-
plete prediction model as a MS Excel worksheet. This allows the further use of the prediction model as for example for opti-
mization. Selected charts of the excel output sheet are shown in Figure 11. The software is currently used by selected compa-
nies of the TOYOTA group. 

 

 
Figure 10: TOPQ Analyzer Screenshot 
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Figure 11: Selected Excel Output Charts 



 

 

7 CONCLUSIONS 

This paper describes a prediction model to estimate the effect of increased buffer capacity onto the system performance based 
on only a single simulation. The method does not require complex mathematical modeling and can be used for nearly any 
kind of discrete event system, including balanced and unbalanced lines, serial and/or parallel systems, flow shops, and job 
shops. There are two main steps to this method.  

The first step analyzes the causes of the idle (starving or blocking) periods for all machines, and determines which buffer 
locations would reduce the idle time. This analysis also includes the indirect effect of buffers that are not in the part flow of a 
machine MX, but may be in the part flow of another machine MY, which in turn affects the idle periods on the machine MX. 
The analysis and graphical display of the path to the causes of the idle periods and the buffer locations in between greatly im-
proves the understanding of the system and the effect of the buffers. 

The second step estimates the performance improvement due to an increase in the buffer sizes, using the information 
gained in the previous step, combined with a statistical analysis of the simulation data. The prediction is accurate and can be 
used for a further optimization of the manufacturing system to determine the optimal buffer allocation. Furthermore, the 
method can be used for almost all discrete event systems, including complex lines with a combination of parallel and serial 
machines.  

Overall the presented prediction model is very suitable for use in industry as it is applicable to typical manufacturing sys-
tems. The method is fully automated, and the prediction accuracy allows the system optimization using very few simulations 
for verification.  
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