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ABSTRACT 
This paper describes a method for the calculation of confidence intervals 

of simulation throughputs and utilizations. The method is based on the 

delta method and uses only a single simulation, where the variation of the 

underlying means is used to determine the variation of the performance 

function by using the first derivative of the performance function. While 

the method has some limitations, it can be used frequently in practice. In 

addition, the method can also be used for short simulations or rare event 

applications, where methods based on batch means fail. This method can 

easily be implemented into existing simulation software. 
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INTRODUCTION 
Scheduling is the process to arrange a number of tasks in a sequence. A 

frequent goal is to reduce the overall time for the performance of all tasks, 

or to ensure the completion of some tasks before a deadline. The time 

needed for the tasks have to be known to ensure the timely completion of 

the tasks. Unfortunately, these times are rarely static but vary depending on 

outside influences and random events. Often, simulation is used to estimate 

these times, and confidence intervals are used to determine the accuracy of 

these estimates. The underlying equations to calculate a confidence interval 

are well known [1].  

However, there are some complications to calculate confidence intervals 

in discrete event simulation. One complication is, that independent and 

identically distributed (i.i.d.) data is required, but simulation data is 

frequently neither independent (e.g. waiting times) nor identically 

distributed (e.g. warming up period) [2], [3]. Additionally, many 

performance measures in discrete event simulation are a function of one or 

more means. For example, the throughput is the inverse of the mean time 

between completions of two parts. This further complicates the calculation 

of confidence intervals 

This paper describes a method to determine the variance of the function 

of the means of one or more variable using the mean and variance of the 

variables and the gradient of the function at the mean value. This paper is 

based on a paper presented at the International Symposium on Scheduling 

2002 in Hamamatsu, Japan [4]. 
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References [5], [6], and [7] give good overviews of the currently 

available methods for confidence interval calculation in simulations, with 

the most popular method being the batch means method. There are a 

number of different batch means and related methods developed. 

References [8], [9], [10], [11] give an overview of different batching 

methods, like overlapping batch means, non overlapping batch means, or 

fixed number of batches methods. There are a number of problems 

associated with the batch mean method. First, it is difficult to decide on the 

number of batches. Secondly, large data sets are needed to achieve valid 

confidence intervals. Third, different batching methods differ widely in 

their results. Finally, it is computationally intensive to calculate the 

confidence intervals, and therefore the confidence intervals are usually not 

calculated continuously during simulations. 

This paper addresses the calculation of confidence intervals of functions 

of mean values. The presented method avoids most of the above problems 

for i.i.d. data. Example applications are given for throughputs and 

utilizations. The method is then validated experimentally using a complex 

simulation. 

INDEPENDENCE OF DATA 
While queue performance measures in a manufacturing system are usually 

heavily dependent, machine performance measures are surprisingly often 

independent or near independent. These independent responses can be seen 

as an individual machine with an independent working time distribution, 

failure time distribution, etc, giving independent and identically distributed 

data. Subsequently, this data can be used for subsequent statistical analyses 
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as for example the calculation of the standard deviation or the confidence 

intervals as shown in equation (1). 
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The independence can be tested using the von Neumann ratio η of the mean 

squared successive difference to the variation (RMSSDV) [12, 13]. 

Equation (2) shows the calculation of the RMSSDV η based on a set of 

data x of size n, where the mean squared difference between successive 

data is divided by the variance of the data. The variable xi,j denotes the jth 

element of the data set xi. Variants of equation (2) can be found in [3] or 

[14]. 
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If the data x is independent the RMSSDV η has a value of two. Thus this 

method can be used to determine if the collected data is approximately 

independent (i.e. with a mean value at or near two) or not (i.e. the mean 

differs from two).  The independence of the data of the selected example 

will be shown in more detail below. 

DERIVED PERFORMANCE MEASURES 
The second problem in measuring the manufacturing system 

performance measures is the handling of derived performance measures, i.e. 

performance measures which are based on a function of the mean value of 

another performance measure. Common examples are frequencies or 
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throughputs, which are the inverse of the mean time between the respective 

events (TBE), for example the throughput is the inverse of the mean time 

between the completion of the parts. The delta method will be 

demonstrated in detail for frequencies, before other performance measures 

as for example percentages or general functions are explained. 

Frequencies and Throughputs 
Frequencies are a measurement of the number of occurrences in a given 

time. Throughputs are a type of frequencies, measuring the number of parts 

produced in a given period of time. Other frequencies are for example 

failure rates, i.e. the number of failures in a given period of time. These 

frequencies are defined by the number of occurrences of an event in a given 

period of time. This can also be described as the inverse of the mean TBE. 

Subsequently, the frequency can be defined as the inverse of the average 

TBE x 1 as shown in equation (3).  
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Problem Statement 
Equation (3) allows the calculation of a frequency for one set of data. 

However, since equation (3) generates only one value y from a set of data x,  

it is not possible to calculate a valid standard deviation or confidence 

interval. However, if the data for the TBE is i.i.d, a standard deviation, and 

a confidence interval of the time between events can be calculated. Yet, 

this variation cannot be simply transformed using equation (3), as this 

would not only create an incorrect variance, but also an incorrect mean 

frequency as shown in Figure 1. In general, equation (4) holds true for all 
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nonlinear functions. Only for linear functions is the mean of the functions 

of the data values equal to the function of the means [15]. 

 ( ) ( )[ ]KK 2121 ,, xxfExxf ≠  (4)

 

(Insert Figure 1 about here) 

Conventional Method Batching 
Currently, in order to evaluate the variance of the derived performance 

measure, batching is used. Generally speaking, batching replaces the 

distribution of the data with a distribution of the batch means. This 

distribution of the batch means has a much smaller variance than the 

original data, and the batch means are usually sought to be i.i.d. Due to this 

smaller variance, the underlying performance function can be seen as 

approximately linear over the range of the batch means. Therefore, the 

variance of the functions of the batch means represents approximately the 

variance of the mean function, or for the case of the frequencies, the 

variance of the inverse batch means represent approximately the variance 

of the mean frequency. This is also visualized in Figure 2. 

(Insert Figure 2 about here) 

Of course, this is only an approximation, whose accuracy depends on the 

range of the batch means and the curvature of the performance function 

over this range, and significant errors are possible. Again, only for linear 

functions will the function variance be estimated correctly. 

The Delta Method for Frequencies 
This leads to the natural conclusion, to replace the function with a 

tangent at the mean value in order to predict the variance of the function. 

This approach is called the “delta method”, also occasionally known as 
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moment matching method. The delta method replaces the function f by its 

tangent f* at the mean values x i. Using this tangent f*, it is possible to 

determine the standard deviation σf of the function f of the mean x 1 based 

on the deviation of the variables σx1. The functional evaluation of the 

standard deviation of the frequency in equation (3) based on the mean x 1 

and the standard deviation σx1 of the TBE is shown in equation (5). Figure 3 

visualizes the throughput example for a tangential line f* replacing the 

function f. 
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(Insert Figure 3 about here) 

The resulting standard deviation σy of the function value y can then be 

used to calculate desired measures of accuracy, as for example a 

confidence interval as shown in equation (6), where t is the student-t 

distribution and α is the confidence level [16]. 
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Of course, it is also possible to use the tangent to translate other 

measures of variation from the TBE to the frequency. Figure 4 for example 

shows how the confidence interval of the TBE is translated directly into a 

confidence interval of the frequency. This may be useful for cases where 

the TBE is non-normal distributed, and more complex calculations are 

needed to describe the behavior of the TBE.  

(Insert Figure 4 about here) 
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It is even possible to combine the delta method with the batch means 

method, for example in cases where the underlying TBE data is not i.i.d. In 

this case, batch means may be used to represent the variance of the 

underlying TBE data while generating independent batch means. A 

standard deviation and a confidence interval may then be calculated based 

on the batch means of the TBE. This standard deviation and confidence 

interval may then be translated into a standard deviation and a confidence 

interval of the frequency using the delta method. This approach combines 

the accuracy of the delta method with the ability to handle dependent data 

using batch means. If the batch means itself are non-normal distributed, it 

is also possible to translate the batch means using the tangent function to 

determine a set of representative data of the frequency. 

The Delta Method for Percentages 
Another common performance measure in discrete event simulation are 

percentages of times, as for example the percentage of time a machine is 

working, or the percentage of time a machine is under repair. In general, a 

percentage can be calculated by dividing the total time a machine is in a 

certain state by the total simulation time. This can also be represented as 

the mean duration a machine is in a certain state x 2 divided by the mean 

duration between the beginnings of a certain state x 1. For example, the 

percentage repair is the mean time to repair divided by the mean time 

between the beginnings of repairs. The function of a percentage based on 

two mean values is shown in equation (7). 
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Replacing the function equation (7) with a tangential plane at the mean 

values, the standard deviation of the percentage can be determined as 

shown in equation (8). This equation (8) also includes the effect of the 

covariance between the two variables x1 and x2 as shown in equation (9). 

Note that equation (9) requires the size n of the data sets x1 and x2 to be 

equal. If the two variables are independent of each other, the covariance is 

zero and the term can be dropped. A subsequent confidence interval can be 

calculated as shown in equation (6).  
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The General Delta Method 
Assume there is a general performance measure y as a function f of the 

mean values one or more variables x i. Common examples are a throughput 

as an inverse of the time between parts, or utilization as the working time 

divided by the time between parts. The mean values x i are calculated based 

on a set of ni data values xi,j, where the mean x i and the standard deviation 

σxi is calculated using the well-known equations as shown in (1).  

Using the standard deviation and the covariance of the variables x i, the 

standard deviation of the function value y can be determined using the delta 

method as shown in equation (10) [17]. Equation (10) includes the effect of 
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the correlation between two paired variables, where cov[x1, x2] is the 

unbiased estimate of the covariance as shown in equation (9) [15].  
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COMPLEX MANUFACTURING SYSTEM  
The presented method was verified using a complex simulation example, 

consisting of seven machines in a complex setting and a mixture of two 

different products. The simulation was performed using the GAROPS 

simulation software as shown in Figure 5 [18], [19].  

(Insert Figure 5 about here) 

The total simulation time was almost two years of simulation. After 

removing the warming up period, this data was then split into 101 subsets 

with a simulation time of 6 days each. In order to calculate valid 

confidence intervals, the data has to be independent. Therefore, the 

RMSSDV has been calculated for the data using equation (2) to determine 

if the data is independent. While simulations are notorious for dependent 

data, the actual machine performance data was surprisingly often 

independent or near independent.  

The independence of the resulting simulation data was measured using 

the von Neumann ratio as shown in equation (2). As expected, measures 

related to the queue performance were heavily dependent. However, 

despite the complex interactions of the system, most machine performance 

measures were independent. In fact, out of 69 measured parameters as for 
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example the working times or the time between failures, all but four were 

approximately independent with a RMSSDV between 1.7 and 2.2 as shown 

in Table 1. Table 1 shows not only the RMSSDV of the durations of the 

events (working, repair, blocked and idle), but also the time between the 

start of the events and the time between the end of the event and the 

beginning of the next event. This allows the calculation of a valid standard 

deviation and a confidence interval for these values as described in more 

detail below. This allows the calculation of a valid standard deviation and a 

confidence interval for these values as described above.  

For each of the 101 subsets, the frequencies and the percentages of all 

machines working, idle, blocked or repaired were measured and the 95% 

confidence intervals calculated. These confidence intervals were then 

compared to the overall average, which are very close to the unknown true 

value. Ideally, for confidence intervals with a confidence level of 95%, 

95% of the confidence intervals contain the true value, i.e. the desired 

coverage is 95%. However, in the real case, the percentage of the 

confidence intervals containing the true value may differ from the ideal 

case, i.e. the actual coverage differs from the desired coverage. The closer 

the actual coverage is to the desired coverage, the more accurate is the 

confidence interval method. Table 2 shows an overview of the coverage 

results of the complex simulation.  

(Insert Table 2 about here) 

Out of the 6219 frequency confidence intervals with a desired coverage 

of 95%, the actual coverage was 94.44%. The instances where the long-

term average was outside of the confidence interval were also 

symmetrically distributed with 2.8% under prediction and 2.7% over 

prediction. This indicates a very good overall fit.  
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Out of the 6219 percentage confidence intervals with a desired coverage 

of 95%, the actual coverage was 92.86%. The instances where the long-

term average was outside of the confidence interval contained 4.3% under 

prediction and 2.8% over prediction. While the fit is not as good as for the 

frequencies, the coverage is still very close to the desired coverage. Overall, 

the actual coverage is almost identical with the desired coverage. 

Furthermore, the actual coverage is also nicely centered, with the number 

of over and under predictions being almost equal.  

The presented method has been compared to the batching method, where 

the confidence interval is based on the batch means. The confidence 

intervals of the frequencies and percentages have been obtained from 100 

simulations, using a fixed number of 30 batches with independent batch 

means. A total of 2180 confidence intervals for both the frequencies and 

percentages have been evaluated, of which only 498 and 1503 confidence 

intervals contained the true mean value. Therefore, the batch means method 

had coverage of only 22.8% and 68.8% for the frequencies and throughputs 

respectively, missing the desired coverage of 95 by a wide margin and is 

clearly inferior to the delta method for independent data. Figure 6 shows 

the results of the delta method compared to the batch means method. 

(Insert Figure 6 about here) 

CONCLUSION 
In conclusion, the method provides very accurate results for near 

independent and identically distributed data. While simulation data is 

known to be dependent, the machine performance data was actually found 

to be frequently independent, allowing the calculation of the confidence 

intervals using the delta method. 
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Compared to batching, it is very fast to calculate the confidence interval, 

as it is not necessary to calculate different batch sizes and perform complex 

statistical tests. Moreover, if additional data becomes available, this data 

can easily be integrated into the previous calculation, and the confidence 

interval can be updated. This allows a sequential adding of data while 

updating the confidence interval. 

Furthermore, the method works also with small sets of data. This is 

extremely useful for example to analyze rare events, where even a long 

simulation does not have many occurrences of the rare event, and 

subsequently batch means methods cannot be applied. 

In summary, the method provides a preferable alternative to calculate the 

confidence intervals for approximately independent data. 
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TABLES 

Table 1: RMSSDV of Complex Simulation 

RMSSDV 

Measure Occurrences Duration
Time between 
Occurrences 

Interval without 
Occurrence 

M1 Working 49049 2.0 2.0 2.0 
M1 Blocked 49050 2.0 2.0 2.0 
M2 Working 49049 2.0 2.0 2.0 
M2 Blocked 14261 1.8 2.0 2.0 
M2 Repair 1043 2.0 2.0 2.0 
M3 Working 16349 2.0 1.8 1.8 
M3 Idle 6151 1.7 1.8 1.8 
M3 Blocked 319 6.1 2.1 2.1 
M3 Repair 1196 2.1 2.0 2.0 
M4 Working 16349 2.0 1.8 1.8 
M4 Idle 16061 1.8 1.8 2.0 
M4 Blocked 8 Insufficient Data 
M4 Repair 494 4.6 2.1 2.1 
M5 Working 3037 1.7 1.7 1.9 
M5 Idle 50 2332.1 2.1 2.2 
M5 Blocked 1721 3.7 2.1 2.1 
M5 Repair 1291 2.1 2.0 2.0 
M6 Working 49046 2.0 1.9 1.9 
M6 Idle 11934 1.8 2.0 2.0 
M6 Blocked 48205 2.0 1.9 2.0 
M6 Repair 893 1.9 2.1 2.1 
M7 Working 49046 2.0 1.9 1.9 
M7 Idle 12755 1.7 1.7 1.7 
M7 Repair 1172 1.9 2.0 2.0 

 

Table 2: Simulation Example Coverage 

Performance 
Measure 

Desired 
Coverage 

Actual 
Coverage 

Too 
Small 

Too 
Large 

Frequency 95% 94.4% 2.9% 2.7% 
Percentage 95% 92.9% 4.3% 2.8% 
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Figure 4: Translation of Confidence Interval 
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Figure 5: GAROPS Simulation Example 
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Figure 6: Complex Example Coverage Results 
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